Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1553

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron diffraction study on the deuterium composition of nickel deuteride at high temperatures and high pressures

Saito, Hiroyuki*; Machida, Akihiko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Physica B; Physics of Condensed Matter, 587, p.412153_1 - 412153_6, 2020/06

 Times Cited Count:0 Percentile:100(Physics, Condensed Matter)

The site occupancy of deuterium (D) atoms in face-centered-cubic nickel (fcc Ni) was measured along a cooling path from 1073 to 300 K at an initial pressure of 3.36 GPa via in situ neutron powder diffraction. Deuterium atoms predominantly occupy the octahedral (O) sites and slightly occupy the tetrahedral (T) sites of the fcc metal lattice. The O-site occupancy increases from 0.4 to 0.85 as the temperature is lowered from 1073 to 300 K. Meanwhile, the T-site occupancy remains c.a. 0.02. The temperature-independent behavior of the T-site occupancy is unusual, and its process is not yet understood. From the linear relation between the expanded lattice volume and D content, a D-induced volume expansion of 2.09(13) $AA $^{3}$$/D atom was obtained. This value is in agreement with the values of 2.14-2.2 $AA $^{3}$$/D atom previously reported for Ni and Ni$$_{0.8}$$ Fe$$_{0.2}$$ alloy.

Journal Articles

Promising neutron irradiation applications at the high temperature engineering test reactor

Ho, H. Q.; Honda, Yuki*; Hamamoto, Shimpei; Ishii, Toshiaki; Takada, Shoji; Fujimoto, Nozomu*; Ishitsuka, Etsuo

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021902_1 - 021902_6, 2020/04

Journal Articles

Measurements of thermal-neutron capture cross-section of cesium-135 by applying mass spectrometry

Nakamura, Shoji; Shibahara, Yuji*; Kimura, Atsushi; Iwamoto, Osamu; Uehara, Akihiro*; Fujii, Toshiyuki*

Journal of Nuclear Science and Technology, 57(4), p.388 - 400, 2020/04

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

The thermal-neutron capture cross-section ($$sigma_{0}$$) and resonance integral(I$$_{0}$$) were measured for the $$^{135}$$Cs(n,$$gamma$$)$$^{136}$$Cs reaction by an activation method and mass spectrometry. We used $$^{135}$$Cs contained as an impurity in a normally available $$^{137}$$Cs standard solution. An isotope ratio of $$^{135}$$Cs and $$^{137}$$Cs in a standard $$^{137}$$Cs solution was measured by mass spectrometry to quantify $$^{135}$$Cs. The analyzed $$^{137}$$Cs samples were irradiated at the hydraulic conveyer of the research reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Wires of Co/Al and Au/Al alloys were used as neutron monitors to measure thermal-neutron fluxes and epi-thermal Westcott's indices at an irradiation position. A gadolinium filter was used to measure the $$sigma_{0}$$, and a value of 0.133 eV was taken as the cut-off energy. Gamma-ray spectroscopy was used to measure induced activities of $$^{137}$$Cs, $$^{136}$$Cs and monitor wires. On the basis of Westcott's convention, the $$sigma_{0}$$ and I$$_{0}$$ values were derived as 8.57$$pm$$0.25 barn, and 45.3$$pm$$3.2 barn, respectively. The $$sigma_{0}$$ obtained in the present study agreed within the limits of uncertainties with the past reported value of 8.3$$pm$$0.3 barn.

JAEA Reports

Survey of computational methods of cross sections for thermal neutron scattering by liquids

Ichihara, Akira

JAEA-Review 2019-046, 36 Pages, 2020/03

JAEA-Review-2019-046.pdf:1.55MB

Toward the revision of JENDL-4.0, we conducted a literature survey on how to compute the cross section of thermal neutrons scattered by a liquid. This report summarizes the computational methods for evaluating thermal neutron cross sections with molecular dynamics simulations. The cross section can be expressed with a function called as scattering law. For light and heavy water, the scattering law data instead of the cross sections have been provided in nuclear databases. In this report we review the formulations of the scattering laws. The scattering laws can be derived from both the intermediate scattering function and the space-time correlation function. Features of the derived scattering laws are briefly explained. It is shown that the scattering law data can be evaluated using a molecular dynamics simulation of the liquid that is the target of thermal neutrons.

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2019-042, 43 Pages, 2020/03

JAEA-Review-2019-042.pdf:25.64MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Thin SiC Neutron Detector with High Radiation Resistance". In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional radiation monitors is difficult because heavy radiation shields are needed. In the present study, we will develop a neutron detector using thin, light-weight and radiation-resistive silicon carbide (SiC) that has low sensitivity to gamma-rays as well as the data collection system in collaboration with the U.K. Using this system, the performance tests will be conducted supposing the real debris retrieval including the irradiation tests. Based on the results, we will conduct research and development aiming to make the system ready for use in real decommissioning works.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2019-040, 77 Pages, 2020/03

JAEA-Review-2019-040.pdf:4.61MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 $$mu$$m $$times$$ 510 $$mu$$m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.

JAEA Reports

Research and development of transparent materials for radiation shield using nanoparticles (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Kyushu University*

JAEA-Review 2019-039, 104 Pages, 2020/03

JAEA-Review-2019-039.pdf:5.57MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Transparent Materials for Radiation Shield using Nanoparticles". The present study aims to reduce radiation exposure of workers in debris retrieval/analysis and reduce deterioration of optical and electronic systems in remote cameras. For these purposes, we develop transparent radiation shield by making the shield materials into nanoparticles, and dispersing/solidifying them in epoxy resin. By making B$$_{4}$$C and W into nanoparticles, we will also develop a radiation shield that shields both neutrons and gamma-rays, and also suppresses secondary gamma-rays produced from neutrons.

Journal Articles

Non-destructive analysis of samples with a complex geometry by NRTA

Ma, F.; Kopecky, S.*; Alaerts, G.*; Harada, Hideo; Heyse, J.*; Kitatani, Fumito; Noguere, G.*; Paradela, C.*; $v{S}$alamon, L.*; Schillebeeckx, P.*; et al.

Journal of Analytical Atomic Spectrometry, 35(3), p.478 - 488, 2020/03

 Times Cited Count:0 Percentile:100(Chemistry, Analytical)

Journal Articles

Estimation of uncertainty in lead spallation particle multiplicity and its propagation to a neutron energy spectrum

Iwamoto, Hiroki; Meigo, Shinichiro

Journal of Nuclear Science and Technology, 57(3), p.276 - 290, 2020/03

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

This paper presents an approach to uncertainty estimation of spallation particle multiplicity of lead ($$^{rm nat}$$Pb), primarily focusing on proton-induced spallation neutron multiplicity ($$x_{pn}$$) and its propagation to a neutron energy spectrum. The $$x_{pn}$$ uncertainty is estimated from experimental proton-induced neutron-production double-differential cross sections (DDXs) and model calculations with the Particle and Heavy Ion Transport code System (PHITS). Uncertainties in multiplicities for $$(n,xn)$$, $$(p,xp)$$, and $$(n,xp)$$ reactions are then inferred from the estimated $$x_{pn}$$ uncertainty and the PHITS calculation. Using these uncertainties, uncertainty in a neutron energy spectrum produced from a thick $$^{rm nat}$$Pb target bombarded with 500 MeV proton beams, measured in a previous experiment, is quantified by a random sampling technique, and propagation to the neutron energy spectrum is examined. Relatively large uncertainty intervals (UIs) were observed outside the lower limit of the measurement range, which is prominent in the backward directions. Our findings suggest that a reliable assessment of spallation neutron energy spectra requires systematic DDX experiments for detector angles and incident energies below 100 MeV as well as neutron energy spectrum measurements at lower energies below $$sim$$1.4 MeV with an accuracy below the quantified UIs.

Journal Articles

Change in mechanical properties by high-cycle loading up to Gigacycle for 316L stainless steel

Naoe, Takashi; Harjo, S.; Kawasaki, Takuro; Xiong, Z.*; Futakawa, Masatoshi

JPS Conference Proceedings (Internet), 28, p.061009_1 - 061009_6, 2020/02

At the J-PARC, a mercury target vessel made of 316L SS suffers proton and neutron radiation environment. The target vessel also suffers cyclic impact stress caused by the proton beam-induced pressure waves. The vessel suffers higher than 4.5$$times$$10$$^8$$ cyclic loading during the expected service life of 5000 h. We have investigated fatigue strength 316L SS up to gigacycle in the previous studies. The cyclic hardening and softening behavior were observed. In this study, to evaluate the cyclic hardening/softening behavior, the dislocation densities of specimens were measured using the neutron diffraction method at the MLF BL-19. The result showed that the dislocation density of a 316L SS was increased with increasing the number of loading cycles. By contrast, in the case of cold-rolled 316L SS, annihilation and re-accumulation of dislocation by cyclic loading were observed. In the workshop, result of neutron diffraction measurement will be introduced with the progress of fatigue test.

Journal Articles

Recent status of the pulsed spallation neutron source at J-PARC

Takada, Hiroshi; Haga, Katsuhiro

JPS Conference Proceedings (Internet), 28, p.081003_1 - 081003_7, 2020/02

At the Japan Proton Accelerator Research Complex (J-PARC), the pulsed spallation neutron source has been in operation with a redesigned mercury target vessel from October 2017 to July 2018, during which the operational beam power was restored to 500 kW and the operation with a 1-MW equivalent beam was demonstrated for one hour. The target vessel includes a gas-micro-bubbles injector and a 2-mm-wide narrow mercury flow channel at the front end as measures to suppress the cavitation damage. After the operating period, it was observed that the cavitation damage at the 3-mm-thick front end of the target vessel could be suppressed less than 17.5 $$mu$$m.

Journal Articles

Measurement of prompt neutron decay constant with spallation neutrons at Kyoto University Critical Assembly using linear combination method

Katano, Ryota; Yamanaka, Masao*; Pyeon, C. H.*

Journal of Nuclear Science and Technology, 57(2), p.169 - 176, 2020/02

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

We proposed the linear combination method as a subcriticality measurement method which estimates the prompt neutron decay constant ($$alpha$$) correlated with the subcriticality using measurement results obtained at multiple detector positions. In the previous study, we confirmed applicability of the linear combination method through the pulsed neutron experiment with DT neutron source at Kyoto University Critical Assembly (KUCA). In this study, we conduct the pulsed neutron source experiment with spallation neutrons at KUCA and confirm the robustness of the linear combination to neutron sources.

Journal Articles

Monte Carlo radiation transport modelling of the current-biased kinetic inductance detector

Malins, A.; Machida, Masahiko; Vu, T. D.; Aizawa, Kazuya; Ishida, Takekazu*

Nuclear Instruments and Methods in Physics Research A, 953, p.163130_1 - 163130_7, 2020/02

 Times Cited Count:1 Percentile:11.69(Instruments & Instrumentation)

Journal Articles

Conceptual study on a novel method for detecting nuclear material using a neutron source

Komeda, Masao; Toh, Yosuke

Annals of Nuclear Energy, 135, p.106993_1 - 106993_6, 2020/01

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

This paper presents a conceptual study of a novel active method using a neutron source. The main feature of this new method is the fast rotation of a neutron source in order to derive the fission neutron counts and applying the counts to detect the nuclear material. Irradiating neutrons to a container that involves nuclear material, the measurement data include both neutrons from the neutron source and fission neutrons. However, if the neutron source is rotated quite fast, the components of the irradiation neutrons and fission neutrons are separated. Since this novel method does not require an expensive D-T tube, this new system is expected to be affordable and easy to assemble.

Journal Articles

Segmental motions of proteins under non-native states evaluated using quasielastic neutron scattering

Fujiwara, Satoru*; Matsuo, Tatsuhito*; Sugimoto, Yasunobu*; Shibata, Kaoru

Journal of Physical Chemistry Letters (Internet), 10(23), p.7505 - 7509, 2019/12

 Times Cited Count:0 Percentile:100(Chemistry, Physical)

Characterization of the dynamics of disordered polypeptide chains is required to elucidate the behavior of intrinsically disordered proteins and proteins under non-native states related to the folding process. Here we develop a method using quasielastic neutron scattering, combined with small-angle X-ray scattering and dynamic light scattering, to evaluate segmental motions of proteins as well as diffusion of the entire molecules and local side-chain motions. We apply this method to RNase A under the unfolded and molten-globule (MG) states. The diffusion coefficients arising from the segmental motions are evaluated and found to be different between the unfolded and MG states. The values obtained here are consistent with those obtained using the fluorescence-based techniques. These results demonstrate not only feasibility of this method but also usefulness to characterize the behavior of proteins under various disordered states.

Journal Articles

Application of linear combination method to pulsed neutron source measurement at Kyoto University Critical Assembly

Katano, Ryota; Yamanaka, Masao*; Pyeon, C. H.*

Nuclear Science and Engineering, 193(12), p.1394 - 1402, 2019/12

 Times Cited Count:2 Percentile:20.03(Nuclear Science & Technology)

The author proposed the linear combination method as a subcriticality measurement method which estimates the prompt neutron decay constant (alpha) correlated with the subcriticality using measurement results obtained at multiple detector positions. In this study, we conduct the pulsed neutron experiment at Kyoto University Critical Assembly (KUCA) and measure alpha by the linear combination method using measured neutron counts. Through experiment, we experimentally show that the linear combination method can reduce the higher-mode effect compared to the conventional method. In addition, experimentally show that the linear combination has capability of the different mode extraction.

JAEA Reports

Improvement of accumulator in cryogenic hydrogen system used for 1-MW pulsed spallation neutron source

Aso, Tomokazu; Tatsumoto, Hideki*; Otsu, Kiichi*; Kawakami, Yoshihiko*; Komori, Shinji*; Muto, Hideki*; Takada, Hiroshi

JAEA-Technology 2019-013, 77 Pages, 2019/09

JAEA-Technology-2019-013.pdf:5.59MB

At Materials and Life Science experimental Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC), a 1-MW pulsed spallation neutron source is equipped with a cryogenic hydrogen system which circulates liquid hydrogen (20 K and 1.5 MPa) to convert high energy neutrons generated at a mercury target to cold neutrons at three moderators with removing nuclear heat of 3.8 kW deposited there. The cryogenic system includes an accumulator with a bellows structure in order to absorb pressure fluctuations generated by the nuclear heat deposition in the system. Welded inner bellows of the first accumulator was failured during operation, forcing us to improve the accumulator to have sufficient pressure resistance and longer life-time. We have developed elemental technologies for manufacturing welded bellows of the accumulator by a thick plate with high pressure resistance, succeeding to find optimum welding conditions. We fabricated a prototype bellows block and carried out an endurance test by adding a pressure change of 2 MPa repeatedly. As a result, the prototype bellows was successfully in use exceeding the design life of 10,000 times. Since distortions given during welding and assembling affect functionality and lifetime of the bellows, we set the levelness of each element of the bellows as within 0.1$$^{circ}$$. The improved accumulator has already been in operation for about 25,000 hours as of January 2019, resulting that the number of strokes reached to 16,000. In July 2018, we demonstrated that the accumulator could suppress the pressure fluctuation generated by the 932 kW beam injection as designed. As current operational beam power is 500 kW, the current cryogenic hydrogen system could be applicable for stable operation at higher power in the future.

JAEA Reports

Estimation of exchange time for neutron startup sources of HTTR

Ono, Masato; Kozawa, Takayuki; Fujimoto, Nozomu*

JAEA-Technology 2019-012, 15 Pages, 2019/09

JAEA-Technology-2019-012.pdf:2.83MB

The High Temperature Engineering Test Reactor has a neutron source of $$^{252}$$Cf to start up the reactor and to confirm count rates of wide range monitors. The half-life of $$^{252}$$Cf is short, about 2.6 years, so it is necessary to replace at an appropriate time. In order to estimate the period to replace, it is necessary to consider not only the half-life but also the fluctuation of the count rate of the wide range monitor to prevent alarm. For that reason, the method has been derived to predict a minimum count rate from relationship between the count rate and the standard deviation of the count rate of the wide range monitors. As a result of predicting the count rate using this method, it was found that the minimum count rate reaches to 3.0cps in 2022 and 1.5 cps in 2024. Therefore, it is necessary to exchange $$^{252}$$Cf by 2024.

Journal Articles

Experimental evaluation of wall shear stress in a double contraction nozzle using a water mock-up of a liquid Li target for an intense fusion neutron source

Kondo, Hiroo*; Kanemura, Takuji*; Park, C. H.*; Oyaizu, Makoto*; Hirakawa, Yasushi; Furukawa, Tomohiro

Fusion Engineering and Design, 146(Part A), p.285 - 288, 2019/09

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Herein, the wall shear stress in a double contraction nozzle has been evaluated experimentally to produce a liquid lithium (Li) target as a beam target for intense fusion neutron sources such as the International Fusion Materials Irradiation Facility (IFMIF), the Advanced Fusion Neutron Source (A-FNS), and the DEMO Oriented Neutron Source (DONES). The boundary layer thickness and wall shear stress are essential physical parameters to understand erosion-corrosion by the high-speed liquid Li flow in the nozzle, which is the key component in producing a stable Li target. Therefore, these parameters were experimentally evaluated using an acrylic mock-up of the target assembly. The velocity distribution in the nozzle was measured by a laser-doppler velocimeter and the momentum thickness along the nozzle wall was calculated using an empirical prediction method. The resulting momentum thickness was used to estimate the variation of the wall shear stress along the nozzle wall. Consequently, the wall shear stress was at the maximum in the second convergent section in front of the nozzle exit.

Journal Articles

Calculation of gamma and neutron emission characteristics emitted from fuel debris of Fukushima Daiichi Nuclear Power Station

Riyana, E. S.; Okumura, Keisuke; Terashima, Kenichi

Journal of Nuclear Science and Technology, 56(9-10), p.922 - 931, 2019/09

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

1553 (Records 1-20 displayed on this page)