Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Gu, G. H.*; Jeong, S. G.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Cho, J.*; Kim, H. S.*; 4 of others*
Journal of Materials Science & Technology, 223, p.308 - 324, 2025/07
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Ito, Tatsuya; Ogawa, Yuhei*; Gong, W.; Mao, W.*; Kawasaki, Takuro; Okada, Kazuho*; Shibata, Akinobu*; Harjo, S.
Acta Materialia, 287, p.120767_1 - 120767_16, 2025/04
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Pandian, K.*; Neikter, M.*; Ekh, M.*; Harjo, S.; Kawasaki, Takuro; Woracek, R.*; Hansson, T.*; Pederson, R.*
JOM, 77(4), p.1803 - 1815, 2025/04
Efthimiopoulos, I.*; Klotz, S.*; Kunc, K.*; Baptiste, B.*; Chauvigne, P.*; Hattori, Takanori
Physical Review B, 111(13), p.134103_1 - 134103_13, 2025/04
We present a comprehensive study of the high pressure behaviour of ReO using X-ray and neutron diffraction, Raman scattering and first-principles calculations to 15 GPa. We show that the ambient pressure
structure converts at 0.7 GPa in a continuous phase transition directly to a cubic phase with space group
and rhombohedral
structures in this pressure range are an artifact due to an alteration of the sample by high-flux synchrotron X-ray radiation. The structural pressure dependence of the
O samples are presented. The data shed light onto the unusual transition and densification mechanism due to progressive tilting of essentially rigid ReO
octahedra.
Abe, Kazuhide
JAEA-Review 2024-065, 26 Pages, 2025/03
The Japan Atomic Energy Agency's research reactor, JRR-3, resumed operations on February 26, 2021, after nearly a decade. As a shared-use facility, JRR-3 is operated to accommodate external users as well. The procedures, from research proposal submissions to final report submissions, are conducted through the online system JRR-3 RING (Research Information NaviGator) (https://jrr3ring.jaea.go.jp/). RING enables integrated management of proposal submissions, schedule adjustments, data sharing, and report submissions, and it has been upgraded in preparation for the resumption of JRR-3 operations. RING is specifically designed to enhance the convenience of beamline users, featuring simplified application processes, improved flexibility in schedule coordination, and enhanced data management capabilities. With the implementation of this system, users can conduct their research more efficiently and securely. Moving forward, JRR-3 aims to expand its role as a platform for neutron research, accessible to a diverse range of researchers both domestically and internationally. The resumption of operations and the expansion of RING mark a significant step toward revitalizing neutron research and fostering collaboration with industries and academia.
Wang, Y.*; Zeng, X.-T.*; Li, B.*; Su, C.*; Hattori, Takanori; Sheng, X.-L.*; Jin, W.*
Chinese Physics B, 34(4), p.046203_1 - 046203_6, 2025/03
Times Cited Count:0Two-dimensional van der Waals ferromagnet FeGeTe
(FGT) holds a great potential for applications in spintronic devices, due to its high Curie temperature, easy tunability, and excellent structural stability in air. In this study, we have performed high-pressure neutron powder diffraction (NPD) up to 5 GPa, to investigate the evolution of its structural and magnetic properties with hydrostatic pressure. The NPD data clearly reveal the robustness of the ferromagnetism in FGT, despite of an apparent suppression by hydrostatic pressure. As the pressure increases from 0 to 5 GPa, the Curie temperature is found to decrease monotonically from 225(5) K to 175(5) K, together with a dramatically suppressed ordered moment of Fe, which is well supported by the first-principles calculations. Although no pressure-driven structural phase transition is observed up to 5 GPa, quantitative analysis on the changes of bond lengths and bond angles indicate a significant modification of the exchange interactions, which accounts for the pressure-induced suppression of the ferromagnetism in FGT.
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 62(3), p.300 - 307, 2025/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Tanabe, Kosuke*; Komeda, Masao; Toh, Yosuke; Kitamura, Yasunori*; Misawa, Tsuyoshi*
Nihon Genshiryoku Gakkai-Shi ATOMO, 67(3), p.198 - 202, 2025/03
no abstracts in English
Guembou Shouop, C. J.; Tsuchiya, Harufumi
Nuclear Instruments and Methods in Physics Research A, 1072, p.170189_1 - 170189_14, 2025/03
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Tanigawa, Masafumi; Seya, Kazuhito*; Asakawa, Naoya*; Hayashi, Hiroyuki*; Horigome, Kazushi; Mukai, Yasunobu; Kitao, Takahiko; Nakamura, Hironobu; Henzlova, D.*; Swinhoe, M. T.*; et al.
JAEA-Technology 2024-014, 63 Pages, 2025/02
The liquid waste treatment process generated sludge items at the plutonium conversion development facility. They are highly heterogeneous and contain large amounts of impurities (Na, Fe, Ni etc.). Therefore, the sludge items have very large sampling uncertainty and so the total measurement uncertainty is very large (approximately 24%). The plutonium scrap multiplicity counter (PSMC) measurement technique for sludge items was developed by joint research between the Japan Atomic Energy Agency (JAEA) and Los Alamos National Laboratory (LANL). The technical validity for sludge items using the PSMC was evaluated using various types of sample measurements and Monte Carlo N-Particle transport code calculations. The PSMC measurement parameters were found to be valid for use with sludge items and the validity of multiplicity analysis was confirmed and demonstrated through comparisons with standard MOX powder and a standard sludge. As a result, the PSMC measurement values were shown to be consistent and reasonable and the large amount of impurity (Fe, Ni etc.) did not impact the results. Therefore, the measurement uncertainty of the improved nuclear material accountancy (NMA) procedure by combined PSMC and high-resolution gamma spectrometry was shown to be 6.5%. In addition, an acceptance test was conducted using PSMC/HRGS and IAEA benchmark equipment. Measured Pu mass by both equipment agrees within the measurement uncertainty of each method, and so the validity for Pu mass measurement by PSMC/HRGS was confirmed. The above results confirm the applicability of PSMC/HRGS as an additional NMA method for sludge and a newly designed NDA procedure based on this study is applied to sludge for NMA in PCDF.
Inoue, Rintaro*; Oda, Takashi; Nakagawa, Hiroshi; Tominaga, Taiki*; Ikegami, Takahisa*; Konuma, Tsuyoshi*; Iwase, Hiroki*; Kawakita, Yukinobu; Sato, Mamoru*; Sugiyama, Masaaki*
Biophysical Journal, 124(3), p.540 - 548, 2025/02
Times Cited Count:0 Percentile:0.00(Biophysics)Fujita, Tatsuya; Yamamoto, Akio*
Journal of Nuclear Science and Technology, 62(2), p.179 - 196, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)This study newly established a direct coupling code system consisting of the nuclear data processing code FRENDY version 2, and the three-dimensional heterogeneous transport code GENESIS (FRENDY-V2/GENESIS) for easy implementation of the random-sampling-based uncertainty quantification considering the implicit effect due to nuclear cross-section (XS) perturbations. The multi-group macroscopic XSs prepared for GENESIS were generated by FRENDY version 2, where the Dancoff factor was calculated by the neutron current method. Then the background XSs were evaluated based on the Carlvik two-term rational approximation. The infinite multiplication factor (k-infinity) and the fission reaction rate distribution in UO and MOX lattice geometries were compared with MVP3 to verify the calculation accuracy of FRENDY-V2/GENESIS. The sensitivity analyses on the discretization conditions such as the ray tracing of the method of characteristics were also carried out. Through several comparisons between FRENDY-V2/GENESIS and MVP3, FRENDY-V2/GENESIS with the SHEM 361-group structure calculates the k-infinity within approximately 50 pcm and the fission reaction rate distribution within approximately 0.1% by the root mean square, respectively. Consequently, the applicability of FRENDY-V2/GENESIS was verified, and FRENDY-V2/GENESIS can be used to discuss the implicit effect due to multi-group XS perturbations.
Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*
Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 14 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Xu, J.*; Lang, P.*; Liang, S.*; Zhang, J.*; Fei, Y.*; Wang, Y.*; Gao, D.*; Hattori, Takanori; Abe, Jun*; Dong, X.*; et al.
Journal of Physical Chemistry Letters (Internet), p.2445 - 2451, 2025/00
Times Cited Count:0The Alder-ene reaction is a chemical reaction between an alkene with an allylic hydrogen, and it provides an efficient method to construct the C-C bond. Traditionally, this reaction requires catalysts, high temperatures, or photocatalysis. In this study, we reported a high-pressure-induced solid-state Alder-ene reaction of 1-hexene at room temperature without a catalyst. 1-Hexene crystallizes at 4.3 GPa and polymerizes at 18 GPa, forming olefins. By exploring gas chromatography-mass spectrometry, we discovered that 1-hexene generates dimeric products through the Alder-ene reaction under high pressures. The in situ neutron diffraction shows that the reaction process did not obey the topochemical rule. A six-membered ring transition state including one C-H bond and two alkene
bonds was evidenced by the theoretical calculation, whose energy obviously decreased when compressed to 20 GPa. Our work offers a novel and promising method to realize the Alder-ene reaction at room temperature without a catalyst, expanding the application of this important reaction.
Fukuda, Kodai
Annals of Nuclear Energy, 208(1), p.110748_1 - 110748_10, 2024/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Yamashita, Takayuki*; Morooka, Satoshi; Gong, W.; Kawasaki, Takuro; Harjo, S.; Hojo, Tomohiko*; Okitsu, Yoshitaka*; Fujii, Hidetoshi*
ISIJ International, 64(14), p.2051 - 2060, 2024/12
Wakui, Takashi; Saito, Shigeru; Futakawa, Masatoshi
Jikken Rikigaku, 24(4), p.212 - 218, 2024/12
Irradiation damage is one of the main factors determining the lifetime of the mercury target vessel for spallation neutron source in J-PARC. To understand material degradation of the used vessels, it is planned to conduct an evaluation using inverse analyses with indentation tests on the structural materials of the used vessels and numerical experiments. This evaluation technique was applied to two kinds of ion-irradiated materials with different displacement damage doses, in which the irradiation condition was simulated. It could be confirmed that the ultimate strength increased, and the total elongation decreased with increasing irradiation. These trends are like the material degradation behaviors which have been reported by using small specimen's tensile tests.
Materials Sciences Research Center
JAEA-Review 2024-037, 141 Pages, 2024/11
Fifteen neutron beam experimental instruments managed by JAEA are installed in JRR-3 (Japan Research Reactor No.3) and are available for internal use including upgrading of instruments and for external users to produce various research results. This report summarizes the progress of internal application research and technical development such as upgrading of neutron beam instruments in the fiscal years 2021 and 2022 after the restart of operation.
Koizumi, Mitsuo; Ito, Fumiaki*; Lee, J.; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Arikawa, Yasunobu*; Abe, Yuki*; Wei, T.*; Yogo, Akifumi*; et al.
Dai-45-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2024/11