Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of high-resolution imaging camera for alpha dust (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2021-044, 58 Pages, 2022/01

JAEA-Review-2021-044.pdf:3.53MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of high-resolution imaging camera for alpha dust" conducted in FY2020. The present study aims to develop a novel alpha-ray camera consisting of imaging and an energy spectrometer to find the alpha dust to reduce the risk of health damage in Decommissioning. We have developed the camera in FY2020, and the measurement test for the energy spectra. Moreover, the imaging test has been operated. In addition, we have also developed a high-dose-rate monitor system using novel scintillators with red/infra-red emission.

JAEA Reports

Development of imaging system with ultra-high spatial resolution aiming to detect alpha-dust (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2019-038, 57 Pages, 2020/03

JAEA-Review-2019-038.pdf:4.6MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Imaging System with Ultra-high Spatial Resolution Aiming to Detect Alpha-dust". In the present study, we have developed a prototype of a system aiming to elucidate the behavior of alpha-dust generated at the time of debris retrieval. In this system, alpha-ray is first converted to visible light by novel scintillator. Then, imaging with ultra-high resolution will be possible using a lens and an Si-semiconductor camera (CMOS camera). Also, it will be possible to identify the species of alpha-ray emitting nuclides by unfolding of the spectra. The demonstration tests of the system will be conducted for dust samplers at the Plutonium Fuel Development Center, JAEA. In the development of the present system, it is important to use scintillator whose emission wavelength is sensitive to the CMOS camera as well as high emission scintillator. Considering these conditions, the key technology will be the improvement of the purity of crystals and optimization of the shapes of the materials including powers.

JAEA Reports

Study of HTGR contribution to Japan's CO$$_{2}$$ emission reduction goal in 2050

Kamiji, Yu; Suzuki, Koichi*; Yan, X.

JAEA-Technology 2016-010, 24 Pages, 2016/07

JAEA-Technology-2016-010.pdf:1.05MB

Japanese government has set the goal of reducing CO$$_{2}$$ emission by 26% in 2030 below the 2013 level, in longer term, by 80% below the 1990 level. To achieve the goals, various measures should be taken. The GTHTR300, a commercial High Temperature Gas-cooled Reactor (HTGR) design being developed by JAEA offers spectrum of heat applications by using its high temperature heat up to 950$$^{circ}$$C. The potential contribution of CO$$_{2}$$ emission reduction by HTGR is estimated considering domestic and overseas deployment of the GTHTR300. The best estimate for domestic CO$$_{2}$$ reduction is 2.07$$times$$10$$^{8}$$ ton- CO$$_{2}$$/yr and that from oversea is 2.25$$times$$10$$^{8}$$ ton- CO$$_{2}$$/yr. The sum of these is about 47% of 9.13$$times$$10$$^{8}$$ ton- CO$$_{2}$$/yr which is CO$$_{2}$$ reduction target in 2050, for which deployment of 52 plants in Japan and 113 plants abroad, with each plant containing four 600 MWt reactor units, is required.

JAEA Reports

Journal Articles

Ion beam induced emissions from solid europium compounds

K.P.Lee*; S.T.Hwang*; ; Furukawa, Katsutoshi; Ono, Shinichi

Journal of Radioanalytical and Nuclear Chemistry, 160(1), p.203 - 209, 1992/00

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

no abstracts in English

Journal Articles

Photoreduction and emission of solid europium(III) chloride in KBr by laser irradiation at 308nm

; Ono, Shinichi

Bulletin of the Chemical Society of Japan, 64(3), p.926 - 930, 1991/03

 Times Cited Count:3 Percentile:31.72(Chemistry, Multidisciplinary)

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1