Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2022-057, 98 Pages, 2023/02
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal" conducted in FY2021. The present study aims to construct a database for quantitative prediction of contaminated reinforced concrete inside the reactor building. In FY2021, data on deformation and water movement caused by drying and reabsorption of mortar were obtained to evaluate the mesoscale cracking behavior of concrete. A rigidbody spring model was used to develop a program that can consider changes in concrete age and temperature, water, and stress conditions. To evaluate the long-term penetration behavior of radionuclides into the factual matrix, data on sorption
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2022-043, 52 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2021. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology (Tokyo Tech), National Institute of Advanced Industrial Science and Technology (AIST), and National Research Nuclear University (MEPhI) as the first year of four years research project. For the criticality characteristic measurement systems to be developed by the Japanese and Russian sides, both Japanese
HPC Technology Promotion Office
JAEA-Review 2022-035, 219 Pages, 2023/01
Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2021, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2021, as well as user support, operational records and overviews of the system, and so on.
Saito, Tatsuo; Yamazawa, Hiromi*; Mochizuki, Akihito
Journal of Environmental Radioactivity, 255, p.107035_1 - 107035_14, 2022/12
Times Cited Count:0 Percentile:0(Environmental Sciences)The seasonal variation of dissolved U (DU) in Lake Biwa was reproduced by the following model and parameter research. The introduced models are the water-DU mass balance, and the ion exchange between UO and H
on the lakeshore soil. The optimized parameters were the CEC of the lakeshore, TU as the sum of DU and AU (soil adsorbed U), kads and kdes as the first order reaction rate coefficients during rapid soil adsorption and desorption of U, respectively. Tabulated by the chemical equilibria constituting DU and analyzed the contribution of each chemical species, it is shown that the seasonal variation of DU is caused by the seasonal variation of pH. A correction to the ion-exchange equilibrium to shift to first order rate reaction only when the daily AU ratio increased above kads or decreased below kdes, improved the reproducibility of DU measurements and reproduced the delay of the DU peak from the pH peak.
Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*
JAEA-Review 2022-027, 85 Pages, 2022/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In this study, ETCC, a gamma-ray imaging system, was modified to be a portable device that can be used in 1F decommissioning project and can operate in high-dose environments. ETCC is the world's first gamma-ray camera capable of complete bijective imaging, the same as an optical camera. Therefore, ETCC can make general quantitative image analysis methods applicable to radiation, and will bring innovative
Center for Computational Science & e-Systems
JAEA-Evaluation 2022-004, 38 Pages, 2022/11
Research on advanced computational science for nuclear applications, based on "the plan to achieve the mid- and long-term goal of the Japan Atomic Energy Agency", has been performed by Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established a committee consisting of external experts and authorities which evaluates and advises toward the future research and development. This report summarizes the results of the R&D performed by CCSE in FY2021 (April 1st, 2021 - March 31st, 2022) and their evaluation by the committee.
Center for Computational Science & e-Systems
JAEA-Evaluation 2022-003, 61 Pages, 2022/11
Japan Atomic Energy Agency (hereinafter referred to as "JAEA") consults an assessment committee, "Evaluation Committee of Research Activities for Computational Science and Technology Research" (hereinafter referred to as "Committee") for result and in-advance evaluation of "Computational Science and Technology Research", in accordance with "General Guideline for the Evaluation of Government Research and Development (R&D) Activities" by Cabinet Office, Government of Japan, "Guideline for Evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology" and "Regulation on Conduct for Evaluation of R&D Activities" by the JAEA. In response to the JAEA's request, the Committee assessed the research program of the Center for Computational Science and e-Systems (hereinafter referred to as "CCSE"). The Committee evaluated the management and research activities of the CCSE based on explanatory documents prepared by the CCSE, and oral presentations with questions-and answers.
Omer, M.; Shizuma, Toshiyuki*; Hajima, Ryoichi*; Koizumi, Mitsuo
Dai-43-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 3 Pages, 2022/11
Kureta, Masatoshi; Yamagata, Yoji*; Miyakoshi, Ken*; Mashii, Tatsuya*; Miura, Yoshiaki*; Takahashi, Kazunori*
JAEA-Research 2022-007, 28 Pages, 2022/09
To enhance energy separation in a counter-current Ranque-Hilsch vortex tube, a newly designed hollow helical fin was inserted into the hot tube of the vortex tube. In this study, the effect of the fin on the energy separation was investigated using three types of the vortex tube, and then computational fluid dynamics (CFD) simulation has been conducted to understand the experimental results and discuss the flow structure in the vortex tube with the hollow helical fin. As a result, it was found from the experimental data that the fin effectively enhanced energy separation, and that the tube length could be shorten. When the inlet air pressure was 0.5 MPa, the maximum temperature difference from the inlet to the cold exit was 62.2C. The CFD code employing the Reynolds Stress Model (RSM) turbulence model was used to analyze the fluid dynamics in the vortex tube. As a result, it was confirmed that the temperature, velocity, and pressure distributions changed significantly at the stagnation point, and that the distributions in the tube with the fin were completely different from those without the fin. It was thought that a strong reversing helical vortex flow with small recirculating vortex structure formed between the fin end and the stagnation point on the cold exit side would enhance energy separation in the vortex tube with the hollow helical fin.
Omer, M.; Shizuma, Toshiyuki*; Hajima, Ryoichi*; Koizumi, Mitsuo
Radiation Physics and Chemistry, 198, p.110241_1 - 110241_7, 2022/09
Times Cited Count:1 Percentile:71.47(Chemistry, Physical)Yoshida, Hiroyuki; Horiguchi, Naoki; Ono, Ayako; Furuichi, Hajime*; Katono, Kenichi*
Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 7 Pages, 2022/08
Thwe, T. A.; Terada, Atsuhiko; Hino, Ryutaro; Nagaishi, Ryuji; Kadowaki, Satoshi
Journal of Nuclear Science and Technology, 59(5), p.573 - 579, 2022/05
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)The simulations of the combustion of self-propagating hydrogen-air premixed flame are performed by an open-source CFD code. The flame propagation behavior, flame radius, temperature and pressure are analyzed by varying the initial laminar flame speed and grid size. When the initial laminar speed increases, the thermal expansion effects become strong which leads the increase of flame radius along with the increase of flame surface area, flame temperature and pressure. A new laminar flame speed model derived previously from the results of experiment is also introduced to the code and the obtained flame radii are compared with those from the experiments. The formation of cellular flame fronts is captured by simulation and the cell separation on the flame surface vividly appears when the gird resolution becomes sufficiently higher. The propagation behavior of cellular flame front and the flame radius obtained from the simulations have the reasonable agreement with the previous experiments.
Ichihara, Yoshitaka*; Nakamura, Naohiro*; Moritani, Hiroshi*; Horiguchi, Tomohiro*; Choi, B.
Nihon Genshiryoku Gakkai Wabun Rombunshi, 21(1), p.1 - 14, 2022/03
In this study, we aim to approximately evaluate the effect of nonlinearity of reinforced concrete structures through seismic response analysis using the equivalent linear analysis method. A simulation analysis was performed for the ultimate response test of the shear wall of the reactor building used in an international competition by OECD/NEA in 1996. The equivalent stiffness and damping of the shear wall were obtained from the trilinear skeleton curves proposed by the Japan Electric Association and the hysteresis curves proposed by Cheng et al. The dominant frequency, maximum acceleration response, maximum displacement response, inertia force-displacement relationship, and acceleration response spectra of the top slab could be simulated well up to a shear strain of approximately =2.0
10
. The equivalent linear analysis used herein underestimates the maximum displacement response at the time of ultimate fracture of approximately
=4.0
10
. Moreover, the maximum shear strain of the shear wall could not capture the locally occurring shear strain compared with that of the nonlinear analysis. Therefore, when employing this method to evaluate the maximum shear strain and test results, including those during the sudden increase in displacement immediately before the fracture, sufficient attention must be paid to its applicability.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2021-047, 127 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal" conducted in FY2020. The present study aims to construct a database for quantitative prediction of contaminated reinforced concrete inside the reactor building. In FY2020, in chapter 3.1, in order to obtain the data for the evaluation of mesoscale cracking behavior, the equipment for the making and the measurement of the test specimens were prepared, the evaluation method was confirmed, and preliminary experiments were carried out. And, for the prediction of cracking on the surface of thick concrete wall, the rigid-body spring network model associated with heat and moisture
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2021-037, 61 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of critical safety technology in fuel debris retrieval" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of research was to improve the criticality safety analysis methods in the case of fuel debris removal with the collaboration with Russian university, which has a lot of experiences in the criticality analysis. This research has been performed as two fiscal years project in FY 2019 and FY 2020 by Tokyo Institute of Technology (Tokyo Tech) and Tokyo City University (TCU) as the Japanese side, and National Research Nuclear University MEPhI as the Russian side. In FY2019, Tokyo Tech introduced a GPU server
HPC Technology Promotion Office
JAEA-Review 2021-022, 187 Pages, 2022/01
Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2020, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2020, as well as user support, operational records and overviews of the system, and so on.
Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Journal of Nuclear Science and Technology, 15 Pages, 2022/00
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Probabilistic risk assessment (PRA) is an essential approach to improving the safety of nuclear power plants. However, this method includes certain difficulties, such as modeling of combinations of multiple hazards. Seismic-induced flooding scenario includes several core damage sequences, i.e., core damage caused by earthquake, flooding, and combination of earthquake and flooding. The flooding fragility is time-dependent as the flooding water propagates from the water source such as a tank to compartments. Therefore, dynamic PRA should be used to perform a realistic risk analysis and quantification. This study analyzed the risk of seismic-induced flooding events by coupling seismic, flooding, and thermal-hydraulics simulations, considering the dependency between multiple hazards explicitly. For requirements of safety improvement, especially in light of the Fukushima Daiichi Nuclear Power Plant accident, sensitivity analysis was performed on the seismic capacity of systems, and the effectiveness of alternative steam generator injection by a portable pump was estimated. We demonstrate the use of this simulation-based dynamic PRA methodology to evaluate the risk induced by a combination of hazards.
Furuta, Takuya
Igaku Butsuri, 41(4), P. 194, 2021/12
Number of medical uses of Particle and Heavy Ion Transport code System (PHITS) has been increased due to the recent high demands of medical use of radiations. The summary of such research works was described in the review article on medical application of Particle and Heavy Ion Transport code System PHITS published in Radiological Physics and Technology in 2021. There was a request from the editorial board of Japan Society of Medical Physics (JSMP) for writing an introductory article of this article in their internal journal. The research works on medical applications described in the review article, useful functions for medical application in PHITS, and newly opened user forum of PHITS have been introduced.
Hasegawa, Yuta; Aoki, Takayuki*; Kobayashi, Hiromichi*; Idomura, Yasuhiro; Onodera, Naoyuki
Parallel Computing, 108, p.102851_1 - 102851_12, 2021/12
Times Cited Count:0 Percentile:0.01(Computer Science, Theory & Methods)The aerodynamics simulation code based on the lattice Boltzmann method (LBM) using forest-of-octrees-based block-structured local mesh refinement (LMR) was implemented, and its performance was evaluated on GPU-based supercomputers. We found that the conventional Space-Filling-Curve-based (SFC) domain partitioning algorithm results in costly halo communication in our aerodynamics simulations. Our new tree cutting approach improved the locality and the topology of the partitioned sub-domains and reduced the communication cost to one-third or one-fourth of the original SFC approach. In the strong scaling test, the code achieved maximum speedup at the performance of 2207 MLUPS (mega- lattice update per second) on 128 GPUs. In the weak scaling test, the code achieved 9620 MLUPS at 128 GPUs with 4.473 billion grid points, while the parallel efficiency was 93.4% from 8 to 128 GPUs.
Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori; Nagai, Haruyasu
JAEA-Review 2021-021, 61 Pages, 2021/11
Triggered by the Fukushima Daiichi Nuclear Power Station accident, there have been a lot of arguments among various situations and levels about utilization of atmospheric dispersion models for a nuclear emergency preparedness and response. Most of these arguments, however, were alternative and extreme discussions on whether predictions by computational models could be applied or not for protective measures in a nuclear emergency, and it was hard to say that these arguments were politely conducted, based on scientific verification in an emergency response. It was known, on the other hand, that there were not a few potential users of atmospheric dispersion models and/or calculation results by the models within the Japan Atomic Energy Agency (JAEA) and outside. However, they seemed to have a lack of understanding and a misunderstanding on proper use of different kinds of atmospheric dispersion models. This report compares an outline of models and calculation method in atmospheric dispersion models for a nuclear emergency preparedness and response, with a central focus on the models which have been developed and used in the JAEA. Examples of calculations by these models are also described in the report. This report aims at contributing to future consideration and activities for potential users of atmospheric dispersion models within the JAEA and outside.