検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 320 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Enhanced work hardening in ferrite and austenite of duplex stainless steel at 200 K; ${it In situ}$ neutron diffraction study

山下 享介*; 古賀 紀光*; Mao, W.*; Gong, W.; 川崎 卓郎; Harjo, S.; 藤井 英俊*; 梅澤 修*

Materials Science and Engineering A, 941, p.148602_1 - 148602_11, 2025/09

Ferrite-austenite duplex stainless steels offer excellent strength and ductility, making them suitable for extreme environments. In this study, ${it in situ}$ neutron diffraction during tensile testing at 293 K and 200 K was used to investigate stress partitioning and phase-specific deformation. Phase stress was calculated using a texture-compensated method. At both temperatures, ferrite showed higher phase stress than austenite, acting as the harder phase. At 200 K, both phases exhibited increased strength and work hardening. Austenite showed significant stacking fault formation alongside dislocation migration, while ferrite retained its dislocation-based deformation mode, becoming more effective. Stress contributions from both phases were comparable. No martensitic transformation occurred. Strengthening and enhanced work hardening in both phases led to high strength at 200 K, with ductility similar to that at 293 K.

論文

Unique deformation behavior of ultrafine-grained 304 stainless steel at 20 K

Mao, W.*; Gong, W.; 川崎 卓郎; Gao, S.*; 伊東 達矢; 山下 享介*; Harjo, S.; Zhao, L.*; Wang, Q.*

Scripta Materialia, 264, p.116726_1 - 116726_6, 2025/07

 被引用回数:0

An ultrafine-grained 304 austenitic stainless steel exhibited pronounced serrated Luders deformation at 20 K, with stress and temperature oscillations reaching 200 MPa and 20 K. ${it In-situ}$ neutron diffraction and digital image correlation revealed discontinuous Luders band propagation and burst martensite formation. During deformation, austenite phase stress remained lower than at upper yielding, indicating elastic behavior. Notably, martensite phase stress stayed lower than austenite until fracture, likely due to stress relaxation from burst martensitic transformation at 20 K. The low martensite stress delayed brittle fracture until austenite plastically yielded during uniform deformation.

論文

Grain refinement of dual phase steel maximizes deformation ability of martensite, leading to simultaneous enhancement of strength and ductility

Park, M.-H.*; 柴田 曉伸*; Harjo, S.; 辻 伸泰*

Acta Materialia, 292, p.121061_1 - 121061_13, 2025/06

 被引用回数:1

Dual-phase (DP) steel, composed of soft ferrite and hard martensite, offers excellent strength-ductility balance and low cost. This study found that refining the DP microstructure enhanced both yield strength and strain hardening, improving strength and ductility. Digital image correlation (DIC) revealed strain localization in ferrite, but refinement reduced strain differences between ferrite and martensite, suppressing crack initiation. More ferrite/martensite interfaces promoted plasticity in martensite via enhanced deformation constraint. ${it In-situ}$ neutron diffraction showed martensite bore higher phase stress, which increased with refinement. By combining $$mu$$-DIC and neutron data, individual stress-strain curves for ferrite and martensite were constructed for the first time, explaining the strength-ductility synergy through interphase constraint. These findings offer guidance for designing heterostructured materials to overcome the strength-ductility trade-off.

論文

Analysis of dissolved radionuclides trapped into corrosion products formed on carbon steel and the corresponding increase in radioactivity

青山 高士; 上野 文義; 佐藤 智徳; 加藤 千明; 佐野 成人; 山下 直輝; 大谷 恭平; 五十嵐 誉廣

Annals of Nuclear Energy, 214, p.111229_1 - 111229_6, 2025/05

 被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)

To elucidate the effect of dissolved radionuclides on corrosion of carbon steels and on formation of corrosion products of carbon steel, corrosion tests and imaging plate analysis were conducted. Carbon steel samples immersed in 10 mM NaCl containing $$^{90}$$Sr and $$^{137}$$Cs were analyzed using an imaging plate. As a result, the distribution of $$^{90}$$Sr or $$^{137}$$Cs in the corrosion products formed on carbon steel was successfully visualized. Furthermore, the radioactivity of the corroded specimens was calculated from calibration curves prepared using a $$^{90}$$Sr standard.

論文

Experimental investigation of phase transformations in steel using X-ray and neutron diffraction

友田 陽*; Harjo, S.; 徐 平光; 諸岡 聡; Gong, W.; Wang, Y.*

Metals, 15(6), p.610_1 - 610_19, 2025/05

Lattice parameters of product and matrix phases in steels have been measured using in situ X-ray and neutron diffraction during forward and reverse transformations. These parameters are influenced by temperature, transformation-induced internal stresses, alloying element partitioning, crystal defects, and magnetic strains. Disentangling these contributions is essential for understanding lattice behavior. This review explores internal strain (stress) associated with ferrite, pearlite, bainite, martensite, and reverse austenite transformations, emphasizing the distinction between diffusional and displacive mechanisms. It also examines how plastic deformation of austenite affects subsequent bainite or martensite formation. The roles of dislocations and vacancies are identified as critical areas for further research.

論文

Role of solute hydrogen on mechanical property enhancement in Fe-24Cr-19Ni austenitic steel; An ${it in situ}$ neutron diffraction study

伊東 達矢; 小川 祐平*; Gong, W.; Mao, W.*; 川崎 卓郎; 岡田 和歩*; 柴田 曉伸*; Harjo, S.

Acta Materialia, 287, p.120767_1 - 120767_16, 2025/04

 被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)

Incorporating solute hydrogen into Fe-Cr-Ni-based austenitic stainless steels enhances both strength and ductility, providing a promising solution to hydrogen embrittlement by causing solid-solution strengthening and assisting deformation twinning. However, its impacts on the relevant lattice defects evolution (${it i.e.}$, dislocations, stacking faults, and twins) during deformation remains unclear. This study compared the tensile deformation behavior in an Fe-24Cr-19Ni (mass%) austenitic steel with 7600 atom ppm hydrogen-charged (H-charged) and without hydrogen-charged (non-charged) using ${it in situ}$ neutron diffraction. Hydrogen effects on the lattice expansion, solid-solution strengthening, stacking fault probability, stacking fault energy, dislocation density, and strain/stress for twin evolution were quantitatively evaluated to link them with the macroscale mechanical properties. The H-charged sample showed improvements in yield stress, flow stress, and uniform elongation, consistent with earlier findings. However, solute hydrogen exhibited minimal influences on the evolution of dislocation and stacking fault. This fact contradicts the previous reports on hydrogen-enhanced dislocation and stacking fault evolutions, the latter of which can be responsible for the enhancement of twinning. The strain for twin evolution was smaller in the H-charged sample compared to the non-charged one. Nevertheless, when evaluated as the onset stress for twin evolution, there was minimal change between the two samples. These findings suggest that the increase in flow stress due to the solid-solution strengthening by hydrogen is a root cause of accelerated deformation twinning at a smaller strain, leading to an enhanced work-hardening rate and improved uniform elongation.

論文

Density of a molten stainless steel-B$$_{4}$$C alloy measured in the electrostatic levitation furnace onboard the international space station

石川 毅彦*; 織田 裕久*; 小山 千尋*; 下西 里奈*; 池内 留美子*; Paradis, P.-F.*; 岡田 純平*; 福山 博之*; 山野 秀将

International Journal of Microgravity Science and Application, 42(2), p.420202_1 - 420202_10, 2025/04

Samples of stainless steel (SS) - boron carbide (B$$_{4}$$C) alloys were levitated in the Electrostatic Levitation Furnace onboard the International Space Station (ISS-ELF) to measure the thermophysical properties of their melts. Melting of samples of two different compositions (SS-12.3, and 28 mass% B$$_{4}$$C) were attempted in the furnace. Even though only one sample (SS-12.3 mass% B$$_{4}$$C) could be melted, its density was successfully obtained.

論文

クリープ破断時間および高温引張強度予測モデルの連合学習

櫻井 惇也*; 鳥形 啓輔*; 松永 学*; 高梨 直人*; 日比野 真也*; 木津 健一*; 森田 聡*; 井元 雅弘*; 下畠 伸朗*; 豊田 晃大; et al.

鉄と鋼, 111(5), p.246 - 262, 2025/04

Creep testing is time-consuming and costly, leading institutions to limit the number of tests conducted to the minimum necessary for their specific objectives. By pooling data from each institution, it is anticipated that predictive models can be developed for a wide range of materials, including welded joints and degraded materials exposed to service conditions. However, the data obtained by each institution is often highly confidential, making it challenging to share with others. Federated learning, a type of privacy-preserving computation technology, allows for learning while keeping data confidential. Utilizing this approach, it is possible to develop creep life prediction models by leveraging data from various institutions. In this paper, we constructed global deep neural network models for predicting creep rupture life of heat-resistant ferritic steels in collaboration with eight institutions using the federated learning system we developed for this purpose. Each institution built a local model using only its own data for comparison. While these local models demonstrated good predictive accuracy for their respective datasets, their predictive performance declined when applied to data from other institutions. In contrast, the global model constructed using federated learning showed reasonably good predictive performance across all institutions. The distance between each institution's data was defined in the space of explanatory variables, with the NIMS data, which had the largest dataset, serving as the reference point. The global model maintained high predictive accuracy regardless of the distance from the NIMS data, whereas the predictive accuracy of the NIMS local model significantly decreased as the distance increased.

報告書

Elemental composition analysis of main structural materials of JMTR

永田 寛; 河内山 真美; 茅根 麻里奈; 菅谷 直人; 西村 嵐; 石川 譲二; 坂井 章浩; 井手 広史

JAEA-Data/Code 2024-016, 44 Pages, 2025/03

JAEA-Data-Code-2024-016.pdf:3.54MB

原子炉施設の構造材の元素組成は、廃止措置計画の策定などの際に評価を行う放射化計算において、重要なパラメータの一つとして使用されている。このうち、試験研究炉の構造材として使用されているアルミニウム合金などの元素組成については、主要成分以外の元素については十分なデータが得られていない。このことから、材料試験炉「JMTR」の主要な構造材として使用されてきたアルミニウム合金、ベリリウム、ハフニウムなどから試料を採取し、元素組成の分析を実施した。本報告書は、令和5年度に取得した78元素の元素組成データについてまとめたものである。

論文

Role of retained austenite and deformation-induced martensite in 0.15C-5Mn steel monitored by ${it in situ}$ neutron diffraction measurement during tensile deformation

山下 享介*; 諸岡 聡; Gong, W.; 川崎 卓郎; Harjo, S.; 北條 智彦*; 興津 貴隆*; 藤井 英俊*

ISIJ International, 64(14), p.2051 - 2060, 2024/12

An Fe-0.15C-5Mn-0.5Si-0.05Nb steel annealed at 660$$^{circ}$$C and 685$$^{circ}$$C showed L$"u$ders deformation followed by high work hardening, with variations in L$"u$ders strain and hardening behavior. ${it In situ}$ neutron diffraction during tensile tests analyzed phase stresses, strength contributions, and austenite orientation. Deformation-induced martensite contributed $$sim$$1000 MPa to strength near tensile failure, while austenite mainly enhanced ductility via transformation-induced plasticity. Austenite transformed to martensite during L$"u$ders deformation regardless of orientation, though 311-oriented grains tended to remain along the tensile direction.

論文

BWR下のSUS304L鋼で生じる粒内応力腐食割れに及ぼす結晶粒微細化の影響

広田 憲亮; 中野 寛子; 武田 遼真; 井手 広史; 土谷 邦彦; 小林 能直*

材料の科学と工学, 61(6), p.248 - 252, 2024/12

SUS304Lステンレス鋼の0.2%耐力に関する比較分析により、ひずみ速度が低下するほど、温度が上昇するほど、0.2%耐力は著しく低下することが明らかとなった。一方で結晶粒径を68.6$$mu$$mから0.59$$mu$$mに微細化した場合における低ひずみ速度下での0.2%耐力への強度低下率の影響は小さかった。しかし、結晶粒微細化は、室温に比べて原子炉運転温度下での0.2%耐力低下には影響を及ぼした。粒内応力腐食割れ(SCC)を促進する条件下での低ひずみ速度引張試験では、28.4$$mu$$m以下の結晶粒径を持つSUS304Lに対しては、原子炉運転温度下での破断ひずみと同等の値を示したが、粗粒のSUS304Lでは破断ひずみが低下した。微細構造解析では、より結晶粒が微細な材料で87%以上の延性破面が観察され、特に0.59$$mu$$mの結晶粒径を持つSUS304Lでは{111}/$$Sigma$$3粒界が数多く存在する一方で、結晶粒径が大きくなるにつれてその割合が減少していた。これらの結果は、結晶粒微細化により、{111}/$$Sigma$$3粒界の増加を通じて、腐食の進行が遅延し、粒内SCCが抑制されたことを示唆している。

論文

First freezing experiments with a molten mixture of boron carbide and stainless steel in core disruptive accidents of sodium-cooled fast reactors

江村 優軌; 松場 賢一; 菊地 晋; 山野 秀将

Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 8 Pages, 2024/11

Assuming the CDA of SFRs, the eutectic melting between B$$_{4}$$C as a control rod material and stainless steel (SS) as a structural material could occur below their melting points. After that, the mixture produced by eutectic melting between B$$_{4}$$C and SS (B$$_{4}$$C-SS mixture) would relocate inside or outside of the original core region. From the viewpoint of core reactivity changes, the relocation behavior of B$$_{4}$$C-SS mixture induced by its melting/freezing behavior, is one of the key elements to evaluate the CDA consequences. Many experimental studies on freezing behavior using core materials and its simulants, including molten UO$$_{2}$$, SS, tin, wood's metal have been reported in the past. Based on these experimental findings, the freezing/blockage model for the severe accident simulation code was established and discussed through analyses of freezing process. Specifically, it has been considered that the experimental correlation of melt-penetration length was a key indicator to quantitatively describe freezing behavior. However, there was no experimental data for the freezing behavior of actual B$$_{4}$$C-SS mixture. Therefore, the freezing experiments of B$$_{4}$$C-SS mixture were conducted to investigate the freezing and blockage behavior inside a flow path such as fuel pin bundle. In the freezing experiments, B$$_{4}$$C powder and SS block were heated up to around 1,750 K using a graphite heating furnace, then B$$_{4}$$C-SS mixture flowed down into an SS pipe for cooling below 750 K. The experimental results showed that the B$$_{4}$$C-SS mixture solidified and resulted in the blockage in the SS pipe with 4 mm or 6.7 mm in inner diameter, respectively. Furthermore, the observations for cross section of SS pipe suggested that the B$$_{4}$$C-SS mixture penetrated deeper than molten SS. This difference is considered to be influenced by decrease of the melting point.

論文

Deformation behavior of ultrafine-grained TRIP steel observed by neutron diffraction

Harjo, S.; Mao, W.*; Gong, W.; 川崎 卓郎

Proceedings of the 7th International Symposium on Steel Science (ISSS 2024), p.205 - 208, 2024/11

This study aimed to elucidate the effect of grain size on the deformation behavior of TRIP steel. We prepared metastable austenitic Fe-24Ni-0.3C steel samples with average grain sizes of 35 ${textmu}$m (coarse grain: CG) and 0.5 ${textmu}$m (ultrafine-grain: UFG) for in situ neutron diffraction studies during tensile deformation at room temperature. Our observations revealed increases in dislocation density in both samples prior to DIMT, indicating that plastic deformation precedes DIMT regardless of grain size. In the UFG sample, a significant rise in dislocation density occurred just around the yielding point with minimal increases in macroscopic plastic strain. Additionally, the dislocations exhibited strong dipole arrangements.

報告書

高速炉燃料用SUS316相当鋼の高温強度及び照射特性評価

宮澤 健; 上羽 智之; 矢野 康英; 丹野 敬嗣; 大塚 智史; 鬼澤 高志; 安藤 勝訓; 皆藤 威二

JAEA-Technology 2024-009, 140 Pages, 2024/10

JAEA-Technology-2024-009.pdf:8.03MB

SUS316相当鋼を用いた高速炉燃料設計の高信頼性化に向けて、SUS316相当鋼被覆管及びラッパ管の高温強度及び照射データを材料学的及び統計学的な観点で評価・解析することで、高温強度及び高照射量までの照射特性に係る設計用強度式を導出した。異常な過渡変化の上限温度を超える900$$^{circ}$$CまでのSUS316相当鋼被覆管及びラッパ管(非照射材)の高温引張試験データ及び高温クリープ試験データを拡充し、0.2%耐力、引張強さ、クリープ破断強度の最適近似式と下限式並びに熱クリープひずみの最適近似式と上下限式を導出した。また、高速実験炉「常陽」、仏国・高速原型炉Phenix及び米国・FFTFで高照射量まで中性子照射したSUS316相当鋼被覆管及びラッパ管の照射後引張試験データ及びSUS316相当鋼被覆管の炉内クリープ破断試験データを解析することで、炉内Na中照射による引張強度及びクリープ強度の低下を表す強度補正係数を導出した。導出した式を実測値と比較することで、その妥当性を確認した。

論文

Martensitic transformation-governed Luders deformation enables large ductility and late-stage strain hardening in ultrafine-grained austenitic stainless steel at low temperatures

Mao, W.*; Gao, S.*; Gong, W.; 川崎 卓郎; 伊東 達矢; Harjo, S.; 辻 伸泰*

Acta Materialia, 278, p.120233_1 - 120233_13, 2024/10

 被引用回数:12 パーセンタイル:87.44(Materials Science, Multidisciplinary)

Using a hybrid method of in situ neutron diffraction and digital image correlation, we found that ultrafine-grained 304 stainless steel exhibits Luders deformation after yielding, in which the deformation behavior changes from a cooperation mechanism involving dislocation slip and martensitic transformation to one primarily governed by martensitic transformation, as the temperature decreases from 295 K to 77 K. Such martensitic transformation-governed Luders deformation delays the activation of plastic deformation in both the austenite parent and martensite product, resulting in delayed strain hardening. This preserves the strain-hardening capability for the later stage of deformation, thereby maintaining a remarkable elongation of 29% while achieving a high tensile strength of 1.87 GPa at 77 K.

論文

Stress-controlled hydrogen embrittlement failure in U-bend high-strength steel

柴山 由樹; 北條 智彦*; 小山 元道*; 秋山 英二*

International Journal of Hydrogen Energy, 88, p.1010 - 1016, 2024/10

 被引用回数:4 パーセンタイル:51.25(Chemistry, Physical)

The effect of plastic deformation on the hydrogen embrittlement behavior of high-strength martensitic steels was investigated using a U-bend test. The hydrogen embrittlement susceptibility appeared to be enhanced with increasing plastic strain. Based on fractographic and stress-strain analyses, the maximum principal stress dominated the hydrogen embrittlement fracture. Although the apparent enhancement with increasing plastic deformation was observed, the origin of the enhancement was increased residual stress arising from the evolution of graded plastic strain during U-bending. We conclude that residual stress rather than plastic strain induced by plastic deformation strongly affects hydrogen embrittlement susceptibility in deformed high-strength steel components.

論文

Anisotropic creep property related to non-spherical shape of mechanically alloyed powder of oxide dispersion strengthened F82H

酒瀬川 英雄; 中島 基樹*; 加藤 太一朗*; 野澤 貴史*; 安堂 正己*

Materials Today Communications (Internet), 40, p.109659_1 - 109659_8, 2024/08

 被引用回数:1 パーセンタイル:35.94(Materials Science, Multidisciplinary)

酸化物分散強化型鋼鋼のナノメートルサイズの酸化物粒子はクリープ強度の向上に対して重要な役割を持つ。以前の研究では旧粉末境界という焼結前に機械的合金粉末の表面であった組織因子に注目した。その結果、より小さなサイズの粉末で製作され微細な旧粉末境界を持つ酸化物分散強化型鋼は、より大きなサイズの粉末で製作され粗大な旧粉末境界を持つ酸化物分散強化型鋼よりも、短いクリープ寿命を示すことを確かめた。これより、機械的合金粉末の大きさがクリープ強度特性に影響を及ぼすことを明らかとなった。本研究では非球状である機械的合金粉末の形状がクリープ強度特性に及ぼす影響に注目した。このような形状がクリープ強度特性に異方性を生じさせる可能性が考えられたからである。ここでは異なった切り出し方位を持つ試験片に対してスモールパンチクリープ試験を実施することで異方性に注目した。これより、クリープ寿命は試験片の切り出し方位によって変化することを確かめて、形状がクリープ強度特性に及ぼす影響を明らかとした。

論文

Thermal stability of retained austenite with heterogeneous composition and size in austempered Fe-2Mn-1.5Si-0.4C alloy

渡邊 未来*; 宮本 吾郎*; Zhang, Y.*; 諸岡 聡; Harjo, S.; 小林 康浩*; 古原 忠*

ISIJ International, 64(9), p.1464 - 1476, 2024/07

 被引用回数:2 パーセンタイル:63.37(Metallurgy & Metallurgical Engineering)

The mechanical properties of TRIP steels depend on heterogeneities of chemical composition and grain size in the retained $$gamma$$ structure, although these heterogeneities have not been characterized in detail. Therefore, in this study, we quantitatively investigate the inhomogeneous carbon concentration and grain size distribution, and its effects on the thermal stability of the retained $$gamma$$ in Fe-2Mn-1.5Si-0.4C (mass%) TRIP steel using FE-EPMA, EBSD, M$"o$ssbauer spectroscopy, and in-situ neutron diffraction during bainitic transformation at 673 K. In-situ neutron diffraction experiments detects high-carbon $$gamma$$ evolving during bainite transformation, in addition to the original $$gamma$$, and the time variation of the volume fraction of highcarbon $$gamma$$ agrees well with the fraction of $$gamma$$ retained at room temperature. Williamson-Hall analysis based on peak width suggests that heterogeneity of carbon content exists even within the high-carbon $$gamma$$. Compositional analysis using FE-EPMA and three-dimensional atom probe directly revealed that fine filmy $$gamma$$ was highly enriched with carbon compared to larger blocky $$gamma$$, and the carbon content in blocky $$gamma$$ decreases with increasing blocky $$gamma$$ size. DICTRA simulation qualitatively reproduces the size dependency of carbon enrichment into $$gamma$$. It was also found that $$gamma$$ tends to be retained at higher carbon content and smaller $$gamma$$ grain size since the smaller grain size directly improves thermal stability and the smaller $$gamma$$ size further contributes to the thermal stability via enhanced carbon enrichment.

論文

Effects of loading direction on the anisotropic tensile properties of duplex stainless steels based on phase strains obtained by in situ neutron diffraction experiments

松下 慧*; 土田 紀之*; 石丸 詠一郎*; 平川 直樹*; Gong, W.; Harjo, S.

Journal of Materials Engineering and Performance, 33(13), p.6352 - 6361, 2024/07

 被引用回数:1 パーセンタイル:10.57(Materials Science, Multidisciplinary)

This study investigated the anisotropy of the tensile properties in a duplex stainless steel of 24Cr-5Ni-0.18N based on in situ neutron diffraction experiments. The 24Cr-5Ni-0.18N steel showed a better balance of tensile strength (TS) and uniform elongation (U.El) compared with 329J4L and 329J1 steels. The Lankford value ($$r$$-value) of the 24Cr-5Ni-0.18N steel was comparable to other duplex stainless steels while showing a larger TS. Regarding the anisotropy of the mechanical properties, the results for a test specimen oriented at 45$$^{circ}$$ showed a low yield strength (YS) and TS, but a better U.El and $$r$$-value. The neutron diffraction results are discussed to explain the mechanical properties.

論文

Thinning behavior of solid boron carbide immersed in molten stainless steel for core disruptive accident of sodium-cooled fast reactor

江村 優軌; 高井 俊秀; 菊地 晋; 神山 健司; 山野 秀将; 横山 博紀*; 坂本 寛*

Journal of Nuclear Science and Technology, 61(7), p.911 - 920, 2024/07

 被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)

Boron carbide (B$$_4$$C)- stainless steel (SS) eutectic reaction behavior is one of the most important issues in the core disruptive accidents (CDAs) of sodium-cooled fast reactors (SFRs). In this study, the immersion experiments using B$$_4$$C pellets with molten SS were conducted to evaluate the CDA sequences such as contact event of solid B$$_4$$C with degraded core materials including SS at very high temperature. The immersion experiment aims at understanding the kinetic behavior of solid B$$_4$$C-liquid SS reaction based on the reduced thickness of B$$_4$$C pellet after the experiment in the temperature ranges from 1763 to 1943 K, which is higher than the temperature of solid B$$_4$$C-solid SS reaction. Based on the kinetic consideration of the reaction rate constants for solid B$$_4$$C-liquid SS reaction, it was found that similar temperature dependency was identified between solid B$$_4$$C-liquid SS and solid B$$_4$$C-solid SS. Besides, the reaction rate constants of solid B$$_4$$C-liquid SS were smaller than those of solid B$$_4$$C-solid SS extrapolated in higher temperature region by two or more orders of magnitude due to two different evaluation method for B$$_4$$C side/SS side. It was confirmed that this difference was reasonable through the consideration of previous reaction tests in solid-solid contact for B$$_4$$C side/SS side.

320 件中 1件目~20件目を表示