Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:5 Percentile:87.42(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

JAEA Reports

Pretreatment works for disposal of radioactive wastes produced by research activities, 1

Ishihara, Keisuke; Yokota, Akira; Kanazawa, Shingo; Iketani, Shotaro; Sudo, Tomoyuki; Myodo, Masato; Irie, Hirobumi; Kato, Mitsugu; Iseda, Hirokatsu; Kishimoto, Katsumi; et al.

JAEA-Technology 2016-024, 108 Pages, 2016/12

JAEA-Technology-2016-024.pdf:29.74MB

Radioactive isotope, nuclear fuel material and radiation generators are utilized in research institutes, universities, hospitals, private enterprises, etc. As a result, various low-level radioactive wastes (hereinafter referred to as non-nuclear radioactive wastes) are produced. Disposal site for non-nuclear radioactive wastes have not been settled yet and those wastes are stored in storage facilities of each operator for a long period. The Advanced Volume Reduction Facilities (AVRF) are built to produce waste packages so that they satisfy requirements for shallow underground disposal. In the AVRF, low-level beta-gamma solid radioactive wastes produced in the Nuclear Science Research Institute are mainly treated. To produce waste packages meeting requirements for disposal safely and efficiently, it is necessary to cut large radioactive wastes into pieces of suitable size and segregate those depending on their types of material. This report summarizes activities of pretreatment to dispose of non-nuclear radioactive wastes in the AVRF.

Journal Articles

New injection bump power supply of the J-PARC RCS

Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki; Tobita, Norimitsu; Hayashi, Naoki; Kinsho, Michikazu; Irie, Yoshiro*; Okabe, Kota; Tani, Norio; Naito, Shingo*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1169 - 1174, 2015/09

The new injection bump power supply for the shift bump magnet of the beam injection sub-systems at the J-PARC (Japan Proton Accelerator Research Complex) 3-GeV RCS (Rapid Cycling Synchrotron) has been developed and manufactured. The power capacity of the new power supply was more than doubled with the injection beam energy upgrading of the LINAC (Linear Accelerator) from 181 MeV to 400 MeV. Furthermore, the low ripple noise on the output current was required to prevent the resonance of the RF shield loop at the ceramic duct with the excitation magnetic field. The power supply newly adopted a capacitor commutation method to form the trapezoid waveform pattern (bump waveform). This paper reports characteristic about the new power supply.

JAEA Reports

Construction, management and operation on advanced volume reduction facilities

Higuchi, Hidekazu; Osugi, Takeshi; Nakashio, Nobuyuki; Momma, Toshiyuki; Tohei, Toshio; Ishikawa, Joji; Iseda, Hirokatsu; Mitsuda, Motoyuki; Ishihara, Keisuke; Sudo, Tomoyuki; et al.

JAEA-Technology 2007-038, 189 Pages, 2007/07

JAEA-Technology-2007-038-01.pdf:15.13MB
JAEA-Technology-2007-038-02.pdf:38.95MB
JAEA-Technology-2007-038-03.pdf:48.42MB
JAEA-Technology-2007-038-04.pdf:20.53MB
JAEA-Technology-2007-038-05.pdf:10.44MB

The Advanced Volume Reduction Facilities (AVRF) is constructed to manufacture the waste packages of radioactive waste for disposal in the Nuclear Science Research Institute of the Japan Atomic Energy Agency. The AVRF is constituted from two facilities. The one is the Waste Size Reduction and Storage Facility (WSRSF) which is for reducing waste size, sorting into each material and storing the waste package. The other is the Waste Volume Reduction Facility (WVRF) which is for manufacturing the waste package by volume reducing treatment and stabilizing treatment. WVRF has an induction melting furnace, a plasma melting furnace, an incinerator, and a super compactor for treatment. In this report, we summarized about the basic concept of constructing AVRF, the constitution of facilities, the specifications of machineries and the state of trial operation until March of 2006.

Journal Articles

Prospect and attractiveness of fusion research and development toward an experimental reactor

Seki, Masahiro; ; Matsuda, Shinzaburo; *; *; *; Nishi, Masataka; *; Tokuda, Shinji; *; et al.

Denki Gakkai Gijutsu Hokoku, 0(613), 102 Pages, 1996/00

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1