Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Decommissioning state of Plutonium Fuel Fabrication Facility; Dismantling the glove box W-9 and equipment interior, and a part of tunnel F1

Nagai, Yuya; Shuji, Yoshiyuki; Kawasaki, Takeshi; Aita, Takahiro; Kimura, Yasuhisa; Nemoto, Yasunori*; Onuma, Takeshi*; Tomiyama, Noboru*; Hirano, Koji*; Usui, Yasuhiro*; et al.

JAEA-Technology 2022-039, 117 Pages, 2023/06

JAEA-Technology-2022-039.pdf:11.96MB

Japan Atomic Energy Agency (JAEA) manages wide range of nuclear facilities. Many of these facilities are required to be performed adjustment with the aging and complement with the new regulatory standards and the earthquake resistant, since the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Station accident. It is therefore desirable to promote decommissioning of facilities that have reached the end of their productive life in order to reduce risk and maintenance costs. However, the progress of facility decommissioning require large amount of money and radioactive waste storage space. In order to address these issues, JAEA has formulated a "The Medium/Long-Term Management Plan of JAEA Facilities" with three pillars: (1) consolidation and prioritization of facilities, (2) assurance of facility safety, and (3) back-end countermeasures. In this plan, Plutonium Fuel Fabrication Facility has been selected as primary decommissioned facility, and dismantling of equipment in the facilities have been underway. In this report, size reduction activities of the glove box W-9 and a part of tunnel F-1, which was connected to W-9, are presented, and the obtained findings are highlighted. The glovebox W-9 had oxidation & reduction furnace, and pellet crushing machine as equipment interior. The duration of activity took six years from February 2014 to February 2020, including suspended period of 4 years due to the enhanced authorization approval process

Journal Articles

COMPASS code development; Validation of multi-physics analysis using particle method for core disruptive accidents in sodium-cooled fast reactors

Koshizuka, Seiichi*; Morita, Koji*; Arima, Tatsumi*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Naito, Masanori*; Shirakawa, Noriyuki*; Okada, Hidetoshi*; Uehara, Yasushi*; et al.

Proceedings of 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8) (CD-ROM), 11 Pages, 2010/10

In this paper, FY2009 results of the COMPASS code development are reported. Validation calculations for melt freezing and blockage formation, eutectic reaction of metal fuel, duct wall failure (thermal-hydraulic analysis), fuel pin failure and disruption and duct wall failure (structural analysis) are shown. Phase diagram calculations, classical and first-principles molecular dynamics were used to investigate physical properties of eutectic reactions: metallic fuel/steel and control rod material/steel. Basic studies for the particle method and SIMMER code calculations supported the COMPASS code development. COMPASS is expected to clarify the basis of experimentally-obtained correlations used in SIMMER. Combination of SIMMER and COMPASS will be useful for safety assessment of CDAs as well as optimization of the core design.

Journal Articles

Validation for multi-physics simulation of core disruptive accidents in sodium-cooled fast reactors by COMPASS code

Koshizuka, Seiichi*; Morita, Koji*; Arima, Tatsumi*; Zhang, S.*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Naito, Masanori*; Shirakawa, Noriyuki*; Okada, Hidetoshi*; et al.

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13) (CD-ROM), 11 Pages, 2009/09

Dispersion and freezing of molten core material was calculated by the COMPASS code to compare with the experimental data of GEYSER. Molten core material flowed up with freezing on the pipe inner surface. As a molten pool behavior, CABRI-TPA2 experiment was analyzed, where a sphere of solid steel was surrounded by solid fuel. Power was injected to cause melting and boiling of the steel sphere. SCARABEE-BE+3 test was analyzed by COMPASS as a validation of failure of duct walls.

Journal Articles

COMPASS code development and validation; A Multi-physics analysis of core disruptive accidents in sodium-cooled fast reactors using particle method

Koshizuka, Seiichi*; Liu, J.*; Morita, Koji*; Arima, Tatsumi*; Zhang, S.*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Naito, Masanori*; Shirakawa, Noriyuki*; et al.

Proceedings of 2009 International Congress on Advances in Nuclear Power Plants (ICAPP '09) (CD-ROM), 1 Pages, 2009/05

A computer code, named COMPASS, is developed for multi-physics analysis of core disruptive accidents of sodium-cooled fast reactors (SFRs). A meshless method, called MPS method, is employed since complex thermal-hydraulics and structural problems with various phase change processes have to be analyzed. Verification for separeted basic processes and validation for practical phenomena are carried out. COMPASS is also expected to investigate molten fuel discharge to avoid re-criticality in large size SFR cores. Both MOX and metal fuels are considered. Eutectic reactions between the metal fuel and the cladding material are investigated by phase diagram calculation, classical and first-principles molecular dynamics. Basic studies relevant to the numerical methods support the code development of COMPASS. Parallel processing is implemented by OpenMP to treat large-scale problems. A visualization tool is also prepared by using AVS.

Journal Articles

Code development for multi-physics and multi-scale analysis of core disruptive accidents in fast reactors using particle methods

Koshizuka, Seiichi*; Morita, Koji*; Arima, Tatsumi*; Zhang, S.*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Shirakawa, Noriyuki*; Naito, Masanori*; Okada, Hidetoshi*; et al.

Proceedings of 16th Pacific Basin Nuclear Conference (PBNC-16) (CD-ROM), 6 Pages, 2008/10

A computer code, named COMPASS, is being developed for various complex phenomena of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). The COMPASS is designed to analyze multi-physics problems involving thermal hydraulics, structure and phase change, in a unified framework of the MPS (Moving Particle Semi-implicit) method. The project has been carried out by six organizations for five years from FY2005 to FY2009. In this paper, the outcomes of the project in FY2007 are presented. Three validation calculations were completed by following the validation plan: melt freezing and blockage formation, molten pool boiling, and duct wall failure. The COMPASS code development was supported by basic studies of the numerical method, material science for eutectic reaction of the metal fuel, and SIMMER-III analyses.

Journal Articles

Code development for core disruptive accidents in sodium-cooled fast reactors

Koshizuka, Seiichi*; Liu, J.*; Morita, Koji*; Arima, Tatsumi*; Zhang, S.*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Naito, Masanori*; Shirakawa, Noriyuki*; et al.

Proceedings of IAEA Topical Meeting on Advanced Safety Assessment Methods for Nuclear Reactors (CD-ROM), 9 Pages, 2007/10

A computer code, named COMPASS (Computer Code with Moving Particle Semi-implicit for Reactor Safety Analysis), is being developed for various complex phenomena of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). Theoretical studies are performed about a unified algorithm for compressible and incompressible flows, fluid flow with solid debris, and algorithm improvement for free surface flows. Code verification and validation procedures are established by exploiting the past experiences in those of SIMMER-III code. COMPASS will be used for separated phenomena in CDAs, while the whole core will be analyzed by SIMMER-III. COMPASS is expected to clarify the detailed process in duct wall failure and fuel discharge to avoid re-criticality during CDAs in large size SFRs.

JAEA Reports

Investigation of utilizing plutonium as mixed oxide fuel(7); Evaluation of burn-up characteristics of BWR fuels

*; *

JNC TJ9420 2001-003, 72 Pages, 2001/02

JNC-TJ9420-2001-003.pdf:3.32MB

Burn-up characteristics of BWR fuels have been investigated for scenario study of FBR introduction and the other studies on practical use of FBR. Nuclear compositions, radioactivity and thermal power of actinides and fission products in the spent fuels of present burn-up (45,000 MWd/t) and high burn-up (60,000 MWd/t) have been evaluated using an burn-up calculation code SWAT. This study was carried out as a part of JNC's feasibility study on commercialized FBR cycle system. Main conditions and results of this study are follows; (1)Evaluation code. :SWAT (open code developed by JAERI) (2)Fuel enrichment. [Bum-up:45 GWd/t, UO$$_{2}$$fuel(U235 enrichment):3.8wt%, MOX fuel(Puf enrichment):3.8wt%] [Bum-up:60 GWd/t, UO$$_{2}$$fuel(U235 enrichment):4.9wt%, MOX fuel(Puf enrichment):5.0wt%] (3)Evaluation items. Decay change in nuclear compositions, radioactivity and thermal power of actinides and fission products during 10000 years (0, 1, 2, 3, 4, 5, 6, 10, 50, 100, 1000, 10000y after burn-up).

JAEA Reports

Investigation of utilizing plutonium as mixed oxide fuel (5); BWR for next generation

*; *; *; *

JNC TJ9440 2000-007, 43 Pages, 2000/03

JNC-TJ9440-2000-007.pdf:1.73MB

Planning of the plutonium utihzation in the Light water thermal reactor has been investigated to evaluate scenario for FBR development. Plans for MOX fuel utilization in the ABWR including Ooma plant are studied, and information of high burnup fuels for a future BWR is summarized based on public documents. Nuclear compositions of the present burnup fuel (45,000MWd/t) and a high burnup fue (60,000MWd/t) have been evaluated using an open code: SRAC. Results of the study are follows; (1)Surveying the status of MOX fuel utilization. The status of MOX and UO$$_{2}$$ fuel utilization in the present BWR and future BWR have been summarized based on public documents. (2)Evaluation of spent MOX and UO$$_{2}$$ fuel composition. Nuclear compositions of spent MOX and UO$$_{2}$$ fuels at 45,000MWd/t and 60,000MWd/t burnup have been evaluated and summarized for recycle scenarios by FBR.

JAEA Reports

Study on high efficiency high power Klystron, 4

Hirano, Koichiro*; Yoshikawa, Kiyoshi*; Yamamoto, Yasushi*; *; *; *; *

PNC TY1604 97-001, 43 Pages, 1997/03

PNC-TY1604-97-001.pdf:1.27MB

no abstracts in English

JAEA Reports

Study on high efficiency high power Klystron

Hirano, Koichiro; Sakuma, Minoru; Yoshikawa, Kiyoshi*; Onishi, Masami*; Yamamoto, Yasushi*; Toku, Hisayuki*

PNC TY1604 95-001, 118 Pages, 1995/03

PNC-TY1604-95-001.pdf:3.25MB

no abstracts in English

JAEA Reports

Study on high efficiency high power Klystron

Yoshikawa, Kiyoshi*; Onishi, Masami*; Yamamoto, Yasushi*; Toku, Hisayuki*; Hirano, Koichiro; Sakuma, Minoru

PNC TY9604 94-001, 118 Pages, 1994/03

PNC-TY9604-94-001.pdf:2.89MB

None

JAEA Reports

Oral presentation

R&D of the next generation safety analysis methods for fast reactors with new computational science and technology, 8; Status of R&D in FY2006

Koshizuka, Seiichi*; Liu, J.*; Morita, Koji*; Arima, Tatsumi*; Zhang, S.*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Naito, Masanori*; Shirakawa, Noriyuki*; et al.

no journal, , 

A computer code is developed based on a particle method technology in order to simulate in detail various phenomana in core disruptive accidents in fast reactors. This report is a summary of progress during FY2006 in a five-year project of the code development.

Oral presentation

FaCT phase-I evaluation on advanced aqueous reprocessing process, 5; Uranium crystallization technology for dissolver solution of spent fuel

Shibata, Atsuhiro; Yano, Kimihiko; Sambommatsu, Yuji; Nakahara, Masaumi; Takeuchi, Masayuki; Hirano, Hiroyasu; Nakajima, Yasuo; Washiya, Tadahiro

no journal, , 

no abstracts in English

Oral presentation

FaCT phase-I evaluation on advanced aqueous reprocessing process, 4; Co-recovery of U-Pu-Np by solvent extraction

Koma, Yoshikazu; Shibata, Atsuhiro; Nakahara, Masaumi; Ogino, Hideki; Arai, Yoichi; Onishi, Hiroyuki*; Nakajima, Yasuo; Hirano, Hiroyasu; Washiya, Tadahiro

no journal, , 

Concerning reprocessing technology for spent FBR fuel, the results of development on solvent extraction for co-recovery of U, Pu and Np will be reviewed. Chemical processing simplified by considering the condition that moderate decontamination is allowed and centrifugal contactor that provides better plant operating ratio and less Pu inventory were developed.

15 (Records 1-15 displayed on this page)
  • 1