Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 57

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Radiation monitoring via manned helicopter around the nuclear power station in the fiscal year 2022 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.

JAEA-Technology 2023-027, 146 Pages, 2024/03

JAEA-Technology-2023-027.pdf:18.12MB

By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been applied as a method to quickly and extensively measure the distribution of radiation. Japan Atomic Energy Agency (JAEA) has continuously conducted ARM via manned helicopter around FDNPS. In this report, we summarize the results of the ARM around FDNPS in the fiscal year 2022, evaluate the changes of ambient dose rates and other parameters based on the comparison to the past ARM results, and discuss the causes of such changes. In order to contribute to improve the accuracy of ambient dose rate conversion, we analyzed the ARM data taking into account undulating topography, and evaluated the effect of this method. Furthermore, the effect of radon progenies in the air on the ARM was evaluated by applying the discrimination method to the measurement results.

JAEA Reports

Background radiation monitoring via manned helicopter and development of technology for radiation monitoring via unmanned airplane for application of nuclear emergency response technique in the fiscal year 2022 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.

JAEA-Technology 2023-026, 161 Pages, 2024/03

JAEA-Technology-2023-026.pdf:14.66MB

By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been utilized as a method to quickly and extensively measure radiation distribution surrounding FDNPS. In order to utilize ARM and to promptly provide the results during a nuclear emergency, information on background radiation levels, topographical features, and controlled airspace surrounding nationwide nuclear facilities have been prepared in advance. In the fiscal year 2022, we conducted ARM around the Mihama Nuclear Power Station of Kansai Electric Power Company (KEPCO), the Tsuruga Power Station of Japan Atomic Power Company (JAPC), and the Ikata Power Station of Shikoku Electric Power Company (YONDEN), and prepared information on background radiation doses and controlled airspace. In addition, we have developed an aerial radiation detection system via unmanned airplane, which is expected to be an alternative to ARM, during a nuclear emergency. This report summarizes the results and technical issues identified.

Journal Articles

Level structures of $$^{56,58}$$Ca cast doubt on a doubly magic $$^{60}$$Ca

Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.

Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08

 Times Cited Count:1 Percentile:0.02(Astronomy & Astrophysics)

Gamma decays were observed in $$^{56}$$Ca and $$^{58}$$Ca following quasi-free one-proton knockout reactions from $$^{57,59}$$Sc. For $$^{56}$$Ca, a $$gamma$$ ray transition was measured to be 1456(12) keV, while for $$^{58}$$Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the $$2^{+}_{1} rightarrow 0^{+}_{gs}$$ decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for $$2^{+}_{1}$$ level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the $$0_{f5/2}$$ and $$0_{g9/2}$$ orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic $$^{60}$$Ca and potentially drives the dripline of Ca isotopes to $$^{70}$$Ca or even beyond.

JAEA Reports

Background radiation monitoring via manned helicopter for application of technique of nuclear emergency response in the fiscal year 2021 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Hokama, Tomonori; et al.

JAEA-Technology 2022-028, 127 Pages, 2023/02

JAEA-Technology-2022-028.pdf:15.21MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report has summarized the knowledge noted above achieved by the aerial radiation monitoring around Ohi and Takahama nuclear power stations. In addition, the examination's progress aimed at introducing airborne radiation monitoring via an unmanned plane during a nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Radiation monitoring via manned helicopter around the Nuclear Power Station in the fiscal year 2021 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Urabe, Yoshimi*; et al.

JAEA-Technology 2022-027, 148 Pages, 2023/02

JAEA-Technology-2022-027.pdf:19.64MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been conducted around FDNPS. The results of the airborne radiation monitoring and the evaluation for temporal change of dose rate in the fiscal 2021 were summarized in this report. Analysis considering topographical effects was applied to the result of the airborne monitoring to improve the accuracy of the conventional method. In addition, technique for discriminating gamma rays from the ground and those from the airborne Rn-progenies was also utilized to evaluate their effect on airborne radiation monitoring.

Journal Articles

"Southwestern" boundary of the $$N = 40$$ island of inversion; First study of low-lying bound excited states in $$^{59}$$V and $$^{61}$$V

Elekes, Z.*; Juh$'a$sz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.

Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12

 Times Cited Count:2 Percentile:0.02(Physics, Nuclear)

The low-lying level structure of $$^{59}$$V and $$^{61}$$V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for $$^{61}$$V while the neutron knock-out reaction provided the data for $$^{59}$$V. Four and five new transitions were determined for $$^{59}$$V and $$^{61}$$V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed $$gamma$$ rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2$$^{-}$$ and 9/2$$^{-}$$ levels. The ($$p$$,$$p'$$) excitation cross sections for $$^{61}$$V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation, $$^{61}$$V could not be unambiguously placed on the island of inversion.

Journal Articles

A First glimpse at the shell structure beyond $$^{54}$$Ca; Spectroscopy of $$^{55}$$K, $$^{55}$$Ca, and $$^{57}$$Ca

Koiwai, Takuma*; Wimmer, K.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Duguet, T.*; Holt, J. D.*; Miyagi, Takayuki*; Navr$'a$til, P.*; Ogata, Kazuyuki*; et al.

Physics Letters B, 827, p.136953_1 - 136953_7, 2022/04

 Times Cited Count:4 Percentile:52.69(Astronomy & Astrophysics)

no abstracts in English

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-029, 132 Pages, 2022/02

JAEA-Technology-2021-029.pdf:24.58MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results of the airborne radiation monitoring and the evaluation for temporal change of dose rate in the fiscal 2020 were summarized in this report. Analysis considering topographical effects was applied to the result of the airborne monitoring to improve the accuracy of conventional method. In addition, technique for discriminating gamma rays from the ground and those from the airborne Rn-progenies was also utilized to evaluate their effect on airborne radiation monitoring.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-020, 138 Pages, 2021/11

JAEA-Technology-2021-020.pdf:17.11MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Tsuruga and Mihama nuclear power station, research reactors in Kindai University Atomic Energy Research Institute and Institute for Integrated Radiation and Nuclear Science, Kyoto University. In addition, examination's progress aimed at introduction of airborne radiation monitoring via unmanned plane during nuclear disaster and the technical issues are summarized in this report.

Journal Articles

Investigation of the ground-state spin inversion in the neutron-rich $$^{47,49}$$Cl isotopes

Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Chen, S.*; Chung, L. X.*; Duguet, T.*; G$'o$mez-Ramos, M.*; et al.

Physical Review C, 104(4), p.044331_1 - 044331_16, 2021/10

AA2021-0468.pdf:1.29MB

 Times Cited Count:5 Percentile:46.8(Physics, Nuclear)

no abstracts in English

Journal Articles

Pairing forces govern population of doubly magic $$^{54}$$Ca from direct reactions

Browne, F.*; Chen, S.*; Doornenbal, P.*; Obertelli, A.*; Ogata, Kazuyuki*; Utsuno, Yutaka; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; Calvet, D.*; et al.

Physical Review Letters, 126(25), p.252501_1 - 252501_7, 2021/06

 Times Cited Count:10 Percentile:69.3(Physics, Multidisciplinary)

Direct proton-knockout reactions of $$^{55}$$Sc were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of $$^{54}$$Ca were investigated through $$gamma$$-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological inter-nucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of $$^{55}$$Sc, valence proton removals populated predominantly the ground-state of $$^{54}$$Ca. This counter-intuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.

Journal Articles

First spectroscopic study of $$^{51}$$Ar by the ($$p$$,2$$p$$) reaction

Juh$'a$sz, M. M.*; Elekes, Z.*; Sohler, D.*; Utsuno, Yutaka; Yoshida, Kazuki; Otsuka, Takaharu*; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Baba, Hidetada*; et al.

Physics Letters B, 814, p.136108_1 - 136108_8, 2021/03

AA2020-0747.pdf:0.83MB

 Times Cited Count:5 Percentile:46.8(Astronomy & Astrophysics)

The nuclear structure of $$^{51}$$Ar was studied by the ($$p$$,2$$p$$) reaction using $$gamma$$-ray spectroscopy for the bound and unbound states. Comparing the results to our shell-model calculations, two bound and six unbound states were established. The low cross sections populating the two bound states of $$^{51}$$Ar could be interpreted as a clear signature for the presence of significant sub-shell closures at neutron numbers 32 and 34 in argon isotopes.

JAEA Reports

Robot operation manual for reconnaissance

Chiba, Yusuke; Nishiyama, Yutaka; Tsubaki, Hirohiko; Iwai, Masaki; Furukawahara, Ryo; Ono, Hayato*; Hayasaka, Toshiro*

JAEA-Testing 2020-007, 42 Pages, 2021/02

JAEA-Testing-2020-007.pdf:4.38MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development was the main part of the nuclear emergency response team of JAEA in full-scale operation starts on the 1st of April, 2020. In this section, we need to develop equipment for a JAEA nuclear emergency. To support full-scale operation, we have created a work robot for opening and closing doors, a work robot for opening and closing valves, and a reconnaissance robot for measuring radiation dose. This report describes how to operate a Reconnaissance robot.

JAEA Reports

Work robot (for valves opening/closing) operation manual

Chiba, Yusuke; Nishiyama, Yutaka; Tsubaki, Hirohiko; Iwai, Masaki; Ono, Hayato*; Hayasaka, Toshiro*

JAEA-Testing 2020-006, 24 Pages, 2021/02

JAEA-Testing-2020-006.pdf:3.35MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development was the main part of the nuclear emergency response team of JAEA in full-scale operation starts on the 1st of April, 2020. In this section, we need to develop equipment for a JAEA nuclear emergency. To support full- scale operation, we have created a work robot for opening and closing doors, a work robot for opening and closing valves, and a reconnaissance robot for measuring radiation dose. This report describes how to operate a work robot (opening and closing valves).

JAEA Reports

Work robot (for opening and closing the door) operation manual

Chiba, Yusuke; Nishiyama, Yutaka; Tsubaki, Hirohiko; Iwai, Masaki; Furukawahara, Ryo; Ono, Hayato*; Hayasaka, Toshiro*

JAEA-Testing 2020-005, 29 Pages, 2021/02

JAEA-Testing-2020-005.pdf:3.07MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development was the main part of the nuclear emergency response team of JAEA in full-scale operation starts on the 1st of April, 2020. In this section, we need to develop equipment for a JAEA nuclear emergency. To support full-scale operation, we have created a work robot for opening and closing doors, a work robot for opening and closing valves, and a reconnaissance robot for measuring radiation dose. This report describes how to operate the work robot (for opening and closing the door).

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; Ishizaki, Azusa; et al.

JAEA-Technology 2020-019, 128 Pages, 2021/02

JAEA-Technology-2020-019.pdf:15.75MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials around FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace around nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during accidents of the facilities. Furthermore, the airborne radiation monitoring has been conducted in Integrated Nuclear Emergency Response Drill to increase effectiveness of the monitoring. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Higashidori nuclear power station, the nuclear fuel reprocessing plant in Rokkasho village and Shika nuclear power station, the full details of the aerial radiation monitoring in Integrated Nuclear Emergency Response Drill in the fiscal 2019. In addition, examination's progress aimed at introduction of airborne radiation monitoring using unmanned helicopter during nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2020-018, 121 Pages, 2021/02

JAEA-Technology-2020-018.pdf:15.15MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results in the fiscal 2019 were summarized in this report. Analysis taken topographical effects into consideration was applied to the result of airborne monitoring to improve the precision of conventional method. In addition, discrimination method of gamma rays from Rn-progenies was also utilized to evaluate their effect on aerial radiation monitoring.

Journal Articles

$$N$$ = 32 shell closure below calcium; Low-lying structure of $$^{50}$$Ar

Cort$'e$s, M. L.*; Rodriguez, W.*; Doornenbal, P.*; Obertelli, A.*; Holt, J. D.*; Men$'e$ndez, J.*; Ogata, Kazuyuki*; Schwenk, A.*; Shimizu, Noritaka*; Simonis, J.*; et al.

Physical Review C, 102(6), p.064320_1 - 064320_9, 2020/12

AA2020-0748.pdf:0.75MB

 Times Cited Count:11 Percentile:73.66(Physics, Nuclear)

Low-lying excited states in the $$N$$ = 32 isotope $$^{50}$$Ar were investigated by in-beam $$gamma$$-ray spectroscopy following proton- and neutron-knockout, multinucleon removal, and proton inelastic scattering at the RIKEN Radioactive Isotope Beam Factory. The energies of the two previously reported transitions have been confirmed, and five additional states are presented for the first time, including a candidate for a 3$$^{-}$$ state. The level scheme built using $$gamma$$ $$gamma$$ coincidences was compared to shell-model calculations in the $$sd-pf$$ model space and to ${it ab initio}$ predictions based on chiral two- and three-nucleon interactions. Theoretical proton- and neutron-knockout cross sections suggest that two of the new transitions correspond to 2$$^{+}$$ states, while the previously proposed 4$$^{+}_{1}$$ state could also correspond to a 2$$^{+}$$ state.

JAEA Reports

Design and produce two sets of multi-joint manipulator (for opening a door) against nuclear disaster and a crawler robot for opening and closing manual valves

Nishiyama, Yutaka; Iwai, Masaki; Chiba, Yusuke; Tsubaki, Hirohiko; Ono, Hayato*; Hayasaka, Toshiro*; Hanyu, Toshinori*

JAEA-Technology 2020-007, 18 Pages, 2020/09

JAEA-Technology-2020-007.pdf:2.33MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of Japan Atomic Energy Agency (JAEA) in full-scale operation starts on the 1st of April, 2020. The section needs to develop equipment for JAEA nuclear emergency. Because of dealing the full-scale operation, the section designed and produced two sets of Multi-joint Manipulator or (for Opening Doors) against Nuclear Disaster in order to put them on two crawler robots in 2018 fiscal year. And the section also designed and produced a Crawler Robot for Opening and Closing Manual Valves in 2019 fiscal year. This report shows two sets of Multi-Joint Manipulator (for Opening Doors) and a Crawler Robot for Opening and Closing Manual Valves designed and produced by Maintenance and Operation Section for Remote Control Equipment in 2018 and 2019 fiscal year.

JAEA Reports

Design and mounting advanced wireless communication equipment on the crawler-type robots for tasks and on the crawler-type scouting robot

Nishiyama, Yutaka; Iwai, Masaki; Tsubaki, Hirohiko; Chiba, Yusuke; Hayasaka, Toshiro*; Ono, Hayato*; Hanyu, Toshinori*

JAEA-Technology 2020-006, 26 Pages, 2020/08

JAEA-Technology-2020-006.pdf:2.43MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to remodel crawler-type robots for tasks, crawler-type scouting robots, and so on. About two crawler-type robots for tasks, the section designed and mounted advanced wireless communication equipment on manipulators mounted on the two robots. The crawler part of the robot has been able to be controlled by way of the new equipment, and when it is broken down, it can be changed by way of an original equipment. And the new equipment makes a single relay robot controllable both the crawler part and the manipulator part of the robot, in case of wireless relay robots being needed. And after checking the ability and characteristic about 5 wireless communication equipment, the section chose and mounted the best equipment on one crawler-type scouting robot. This report shows design and mounting advanced wireless communication equipment on the two crawler-type robots for tasks and on the one crawler-type scouting robot.

57 (Records 1-20 displayed on this page)