Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Aoki, Takeshi; Shimizu, Atsushi; Ishii, Katsunori; Morita, Keisuke; Mizuta, Naoki; Kurahayashi, Kaoru; Yasuda, Takanori; Noguchi, Hiroki; Nomoto, Yasunobu; Iigaki, Kazuhiko; et al.
Annals of Nuclear Energy, 220, p.111503_1 - 111503_7, 2025/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Aiming to establish coupling technologies between a high temperature gas cooled reactor and a hydrogen production plant, JAEA has initiated the HTTR Heat Application Test Project and is conducting the safety design and the safety analysis for the licensing of the HTTR Heat Application Test Facility. The present study proposed a relative evaluation methodology for the demarcation of applicable laws and design standards for the nuclear hydrogen production system and applied it to the HTTR Heat Application Test Facility. The evaluation results showed that a candidate applying the High Pressure Gas Safety Act to the Heat Application Test Facility (hydrogen production plant) and design standards established under the High Pressure Gas Safety Act to the steam reformer did not show the lowest category in any of the metrics, and was proposed as the most superior demarcation option for the HTTR Heat Application Test Facility.
Myagmarjav, O.; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ono, Masato; Nomura, Mikihiro*; Takegami, Hiroaki
Progress in Nuclear Science and Technology (Internet), 7, p.235 - 242, 2025/05
Sato, Hiroyuki; Yan, X.
Progress in Nuclear Science and Technology (Internet), 7, p.293 - 298, 2025/05
Kubo, Shinji
Shokubai, 67(2), p.71 - 77, 2025/04
no abstracts in English
Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Kasahara, Seiji; Okamoto, Koji*
JAEA-Research 2024-012, 98 Pages, 2025/02
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for the purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO
-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. In research project of Pu-burner HTGR carried out from fiscal year of 2014 to fiscal year of 2017, simulated CFPs were fabricated using Ce to simulate Pu. Moreover, simulated fuel compacts were fabricated using fabricated simulated CFPs. In this report, results of microstructural observation of CeO
-YSZ and ZrC layer at each fabrication step are reported.
Kubo, Shinji
Kinzoku, 95(1), p.25 - 33, 2025/01
no abstracts in English
Sugimoto, Chihiro; Myagmarjav, O.; Tanaka, Nobuyuki; Noguchi, Hiroki; Takegami, Hiroaki; Kubo, Shinji
International Journal of Hydrogen Energy, 95, p.98 - 107, 2024/12
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Myagmarjav, O.; Ono, Masato; Sugimoto, Chihiro
Chemical Engineering Science, 299, p.120479_1 - 120479_11, 2024/11
Times Cited Count:0 Percentile:0.00(Engineering, Chemical)We developed a deep neural network method to predict the composition of the iodine-sulfur process of thermochemical water-splitting hydrogen production using measurable properties. Unlike conventional titration analysis, this approach allows a quick understanding of fluid composition, providing essential information for controlling operating conditions. This study focused on the HI-I-H
O three-component system within the IS process. Using Gibbs phase rule, the DNN model was constructed using online measurable parameters, such as temperature, pressure, and density, as input conditions. The model was trained with experimental data, and the structural parameters were tuned. Composition prediction using actual trend data demonstrated good correlation with titration analysis measurements. Furthermore, the local interpretable model-agnostic explanations method was incorporated to gain insights into the significance of input parameters for compositions from the DNN model, providing valuable information on crucial parameters for effective composition control.
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 11 Pages, 2024/11
Our research objectives are to develop a VCS that utilizes radiative cooling to passively remove decay heat and residual heat from the RPV during expected and unexpected natural phenomena and accidents. To solve the back pressure problem around the inlet and outlet, it is necessary to minimize reliance on fluid actuation, such as water, air, etc., and to avoid using natural circulation or natural convection as much as possible to improve safety against external hazards. In this presentation, we present the structural concept of the proposed VCS integrated with the reactor building and report the results of the cooling performance evaluation based on the results of experimental and analytical studies conducted to date.
Morita, Keisuke; Aoki, Takeshi; Shimizu, Atsushi; Sato, Hiroyuki
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 6 Pages, 2024/11
Okita, Shoichiro; Aoki, Takeshi; Fukaya, Yuji; Tachibana, Yukio
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 5 Pages, 2024/11
Okita, Shoichiro; Abe, Yutaka*; Tasaki, Seiji*; Fukaya, Yuji
Radioisotopes, 73(3), p.233 - 240, 2024/11
Department of HTTR
JAEA-Review 2024-034, 70 Pages, 2024/10
This report summarizes the activities carried out in the fiscal year 2022 about the operation and maintenance of the High Temperature Engineering Test Reactor (HTTR), the R&Ds using the HTTR and so on. The HTTR is the first Japanese test reactor of High Temperature Gas-cooled Reactor (HTGR) type with 30MW in thermal power and whose maximum outlet coolant temperature achieved 950C. HTGRs are regarded as the promising candidates of the Next Generation Nuclear Plants conformed to the future decarbonized society because of the inherent safety characteristics as well as high temperature heat supply capability for not only a power generation but for wide-ranging industrial uses such as a hydrogen production and so on. The purpose of the HTTR is establishment of basic HTGR technologies, demonstration of HTGR safety characteristics and so on. The HTTR has had a lot of experience of HTGRs' operation and maintenance throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2022, we conducted maintenance of the HTTR such as countermeasures of differential pressure rise event for the primary helium gas circulator's filters occurred at an operation in the year 2021.
Aoki, Takeshi; Hasegawa, Takeshi; Kurahayashi, Kaoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Sakaba, Nariaki
Proceedings of 11th International Topical Meeting on High Temperature Reactor Technology (HTR 2024), 6 Pages, 2024/10
Japan Atomic Energy Agency (JAEA) is planning to perform a test named HTTR heat application test coupling HTTR (High temperature engineering test reactor) and a hydrogen production plant. The present study reports results of the safety design and safety analysis for HTTR heat application test facility. As a safety design, safety classification of structures, systems, and components was defined in the test facility based on their safety functions. As a preliminary safety analysis, a thermal-hydraulic analysis was performed with RELAP5 code. The safety analysis revealed that newly identified events for HTTR heat application test facility except for the rupture of heat transfer tube of steam generator was enveloped by the licensing basis events in conventional HTTR. The preliminary analysis proved that the safety criteria is satisfied in the candidate of licensing basis event.
Fukaya, Yuji; Okita, Shoichiro; Nakagawa, Shigeaki; Terao, Tsuyoshi*; Koike, Akifumi*
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
Japan Atomic Energy Agency, ANSeeN, and Shizuoka University has been conducted a joint-research to develop nuclear instrument for High Temperature Gas-cooled Reactor (HTGR) core power distribution for 3 years from 2021 supported by "Nuclear Energy System R&D Project" in MEXT. In the project, there are two R&Ds for "Development of ex-core detector" and "Development of in-core detector". The part of "Development of ex-core detector" is reported in this presentation. The "Development of ex-core detector" is innovative technology by virtue of long flight length neutron of graphite moderated HTGR core and Computed Tomography (CT) technologies. These technologies is expected to be applied to other reactors.
Takeda, Takeshi; Shibata, Taiju
JAEA-Review 2024-040, 29 Pages, 2024/09
An important theme of Japan's 6th strategic energy plan is to indicate the energy policy path towards carbon neutrality by 2050. Policy responses for Japan's nuclear energy research and development (R&D) towards 2030 contain the demonstrations of technologies for small modular reactors (SMRs) through international cooperation by 2030. In light of this energy plan, basic policy initiatives over the next 10 years have been compiled to realize Green Transformation (GX), which simultaneously achieves decarbonization and economic growth. Looking overseas, activities of SMR R&D are active internationally, mainly in the US, Canada, Europe, China, and Russia. These activities are not only by heavy industry manufactures and R&D institutes, but also by venture companies. Under these circumstances, the NEA CSNI has gathered an Expert Group on SMRs (EGSMR) to help estimate the safety effects of SMRs. The EGSMR efforts required the submission of responses to several questionnaires whose main purpose was to collect the latest information on the efforts of SMR deployment and research. The first author of this report responded to this based on information from Hitachi-GE Nuclear Energy, Ltd. and Mitsubishi Heavy Industries, Ltd. as well as JAEA. Most of the responses from Japan to the questionnaires are the information that serves as the basis of CSNI Technical Opinion Paper No. 21 (TOP-21). In this report, the Japan's publicly available responses to the questionnaires arranged and additional information are explained, which complements some of the content of the TOP-21. In this manner, the investigation results of R&D related to SMR in Japan, focusing on the EGSMR activities (2022-2023), are summarized. The target of this report is to provide useful information for future discussions on international cooperation concerning SMR as well as nuclear power field human resources development internationally and domestically.
Nagatsuka, Kentaro; Noguchi, Hiroki; Nagasumi, Satoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Nishihara, Tetsuo; Sakaba, Nariaki
Nuclear Engineering and Design, 425, p.113338_1 - 113338_11, 2024/08
Times Cited Count:4 Percentile:91.70(Nuclear Science & Technology)HTGR has a potential to contribute to decarbonization of hard-to-abate industries by supplying a large amount of hydrogen and high temperature heat or steam without carbon dioxide emission. JAEA has been conducting R&Ds for HTGR technologies with High Temperature Engineering Test Reactor (HTTR). This paper shows that HTTR's tests including the loss of core cooing test as a joint the OECD/NEA international research project and a HTTR heat application test plan which demonstrate hydrogen production by coupling the HTTR with a hydrogen production test facility. Additionally, aiming for operation start from the latter half of 2030s, the basic design of the HTGR demonstration reactor has been shown. The Japan's HTGR technology capabilities established by the HTTR project will be fully utilized for the construction of HTGR demonstration reactor.
Ishitsuka, Etsuo; Nagasumi, Satoru; Hasegawa, Toshinari; Kawai, Hiromi*; Wakisaka, Shinji*; Nagase, Sota*; Nakamura, Kento*; Yaguchi, Hiroki*; Ishii, Toshiaki; Nakano, Yumi*; et al.
JAEA-Technology 2024-008, 23 Pages, 2024/07
Five people from three universities participated in the 2023 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the analysis of HTTR core, the analysis of behavior on loss of forced cooling test, the analysis of Iodine deposition behavior in primary cooling system and the feasibility study of energy storage system for HTGRs. In the questionnaire after this training, there were impressions such as that it was useful as a work experience and some students found it useful for their own research. These impressions suggest that this training was generally evaluated as good.
Okita, Shoichiro; Sakurai, Tatsuhiro*; Ezaki, Iwao*; Takagi, Katsuyuki*; Nakano, Takayuki*; Hino, Masahiro*
KURNS Progress Report 2023, P. 97, 2024/07
Shimazaki, Yosuke; Jidaisho, Tatsuya; Ishii, Toshiaki; Inoi, Hiroyuki; Iigaki, Kazuhiko
JAEA-Technology 2024-005, 23 Pages, 2024/06
HTTR has newly assumed Beyond Design Basis Accident (BDBA) as part of conformity assessment with the new regulatory standards and has established measures to prevent the spread of BDBA. Among these measures, to prevent the spread of BDBA caused by cooling water leaks from spent fuel storage pool, the Oarai Research Institute's fire engine was selected as an equipment to prevent the spread of BDBA, and required performances such as pumping water performance were determined. After all required performances were confirmed by inspections, the fire engine passed the operator's pre-use inspection and contributed to the restart of the HTTR operations.