Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 11557

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of ESR thermochronology for mountains in Japan; An Assessment of ESR signal variation caused by sample preparation

Kajita, Yuya*; Sueoka, Shigeru; Tani, Atsushi*; Isotani, Shusuke*; Tagami, Takahiro*

Fuisshon, Torakku Nyusureta, (36), p.6 - 8, 2023/12

no abstracts in English

Journal Articles

Countermeasure for reduction of groundwater inflow and construction of the Mizunami Underground Research Laboratory

Mikake, Shinichiro

Chikasui Gakkai-Shi, 65(4), p.323 - 331, 2023/11

no abstracts in English

Journal Articles

Criticality safety evaluation of high active liquid waste during the evaporation to dryness process at Tokai Reprocessing Plant

Miura, Takatomo; Kudo, Atsunari; Koyama, Daisuke; Obu, Tomoyuki; Samoto, Hirotaka

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 10 Pages, 2023/10

Tokai Reprocessing Plant (TRP) had reprocessed 1,140 tons of spent fuel discharged from commercial reactors (BWR, PWR) and Advanced Thermal Reactor "Fugen" from 1977 to 2007. TRP had entered decommissioning stage in 2018. In order to reduce the risk of High Active Liquid Waste (HALW) held at the facility, the vitrification of HALW is given top priority. HALW generated from reprocessing of spent fuel contains not only fission products (FPs) but also trace amounts of uranium (U) and plutonium (Pu) within the liquid and insoluble residues (sludge). Under normal conditions, concentrations of U and Pu in HALW are very low so that it can not reach criticality. Since FPs with high neutron absorption effect coexists in HALW, even if the cooling function is lost due to serious accident and HALW evaporates to dryness, it is considered that criticality would not been reached. In order to confirm this estimation quantitatively, criticality safety evaluations were carried out for the increase of U and Pu concentrations by evaporation of HALW to the point of dryness. In this evaluation, infinite multiplication factors were calculated for each of solution system and sludge system of HALW with respect to the concentration change through evaporation to dryness. It is confirmed it could not reach criticality. The abundance ratios of U, Pu and FPs were set conservatively based on analytical data and ORIGEN calculation results. Multiplation factors for two-layer infinite slab model of solution and sludge systems of HALW were also calculated, and it was confirmed it could not reached criticality. In conclusion, the result was gaind that there could be no criticality even in the process through evaporation to dryness of HALW in TRP.

JAEA Reports

Document collection of the 39th Technical Special Committee on Fugen Decommissioning

Sato, Yuji; Miyamoto, Yuta; Awatani, Yuto; Yamamoto, Kosuke; Hatakeyama, Takumi

JAEA-Review 2023-002, 59 Pages, 2023/08


"Fugen Decommissioning Engineering Center", in planning and carrying out our decommissioning technical development, organizes "Technical special committee on Fugen decommissioning" which consists of the members well-informed, aiming to make good use of Fugen as a place for technological development which is opened domestic and international, as the central place in research and development base of Fukui prefecture, and to utilize the outcome in our decommissioning to the technical development effectively. This report consists of presentation paper are "Achievements and Considerations for Sampling and Analysis of Reactor Core Components", "Treatment of liquid scintillator waste liquid" and "Results and issues of rationalization of decontamination related to the clearance and considerations related to surface contamination monitoring" which is presented in the 39th Technical Special Committee on Fugen Decommissioning.

JAEA Reports

Evaluation of flow rate of groundwater into and out of concrete vault disposal facility according to geological environment and deterioration of the facility

Ogawa, Rina; Totsuka, Masayoshi*; Sakai, Akihiro

JAEA-Technology 2023-012, 57 Pages, 2023/07


Concrete vault disposal facility is assumed to be installed below the groundwater table because it is necessary to install them on the ground that has enough bearing capacity. Therefore, the flow rates of groundwater into and out of concrete vault were evaluated by taking into account the permeability coefficients of the geological environment surrounding the facility and of the engineered structure of the facility. Groundwater flow analysis was performed by using the groundwater flow analysis code MIG2DF based on finite element method. In the evaluation of considering the geological environment, since the flow rate of groundwater into and out of the bottom of concrete vault was larger than the flow rates into and out of other sides of the vault in previous technical studies, the evaluation of the flow rate was performed by varying the permeability coefficient of the bedrock adjacent to the bottom of concrete vault. In addition, the other evaluation of the flow rate was conducted assuming the deterioration of concrete vault and of bentonite-mixed soil. As a result, it was found that the permeability coefficient of bedrock adjacent to concrete vault greatly contributed to flow rates of groundwater into and out of concrete vault. In addition, as the permeability coefficient of the bentonite-mixed soil increased due to chemical deterioration, the flow rate of leachate into the surrounding cover soil increased. From the above results, it was found that these permeability coefficients were important influencing factors in the engineering design and safety evaluation of concrete vault disposal facilities.

JAEA Reports

Report of backfilling and restoration works in the Mizunami Underground Research Laboratory

Takeuchi, Ryuji; Mikake, Shinichiro; Ikeda, Koki; Nishio, Kazuhisa*; Kokubu, Yoko; Hanamuro, Takahiro

JAEA-Review 2023-007, 114 Pages, 2023/07


Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center has been conducting the Mizunami Underground Research Laboratory (MIU) Project to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan since fiscal year 1996. Backfilling and restoration works in the MIU site have been being conducted based on "the MIU Project from FY2020 onwards" which is defined the way forward of backfilling and restoration works and environmental monitoring investigations in the MIU site, since fiscal year 2020. This report summarizes the outline, process, and achievements of the construction and the safety patrol of the backfilling and restoration works in the MIU site performed from May 16, 2020 to January 16, 2022.

Journal Articles

Impact of MOX fuel use in light-water reactors; Long-term radiological consequences of disposal of high-level waste in a geological repository

Minari, Eriko*; Kabasawa, Satsuki; Mihara, Morihiro; Makino, Hitoshi; Asano, Hidekazu*; Nakase, Masahiko*; Takeshita, Kenji*

Journal of Nuclear Science and Technology, 60(7), p.793 - 803, 2023/07

 Times Cited Count:2 Percentile:48.47(Nuclear Science & Technology)

JAEA Reports

Removal of spent fuel sheared powder for decommissioning of Main Plant

Nishino, Saki; Okada, Jumpei; Watanabe, Kazuki; Furuuchi, Yuta; Yokota, Satoru; Yada, Yuji; Kusaka, Shota; Morokado, Shiori; Nakamura, Yoshinobu

JAEA-Technology 2023-011, 39 Pages, 2023/06


Tokai Reprocessing Plant (TRP) which shifted to decommissioning phase in 2014 had nuclear fuel materials such as the spent fuel sheared powder, the diluted plutonium solution and the uranium solution in a part of the reprocessing main equipment because TRP intended to resume reprocessing operations when it suspended the operations in 2007. Therefore, we have planned to remove these nuclear materials in sequence as Flush-out before beginning the decommissioning, and conducted removal of the spent fuel sheared powder as the first stage. The spent fuel sheared powder that had accumulated in the cell of the Main Plant (MP) as a result of the spent fuel shearing process was recovered from the cell floor, the shearing machine and the distributor between April 2016 and April 2017 as part of maintenance. Removing the recovered spent fuel sheared powder was conducted between June 2022 and September 2022. In this work, the recovered powder was dissolved in nitric acid at the dissolver in a small amount in order to remove it safely and early, and the dissolved solution was sent to the highly radioactive waste storage tanks without separating uranium and plutonium. Then, the dissolved solution transfer route was rinsed with nitric acid and water. Although about 15 years had passed since previous process operations, the removing work was successfully completed without any equipment failure because of the organization of a system that combines veterans experienced the operation with young workers, careful equipment inspections, and worker education and training. Removing this powder was conducted after revising the decommissioning project and obtaining approval from the Nuclear Regulation Authority owing to operating a part of process equipment.

JAEA Reports

Controlled release of radioactive krypton gas

Watanabe, Kazuki; Kimura, Norimichi*; Okada, Jumpei; Furuuchi, Yuta; Kuwana, Hideharu*; Otani, Takehisa; Yokota, Satoru; Nakamura, Yoshinobu

JAEA-Technology 2023-010, 29 Pages, 2023/06


The Krypton Recovery Development Facility reached an intended technical target (krypton purity of over 90% and recovery rate of over 90%) by separation and rectification of krypton gas from receiving off-gas produced by the shearing and the dissolution process in the spent fuel reprocessing at the Tokai Reprocessing Plant (TRP) between 1988 and 2001. In addition, the feasibility of the technology was confirmed through immobilization test with ion-implantation in a small test vessel from 2000 to 2002, using a part of recovered krypton gas. As there were no intentions to use the remaining radioactive krypton gas in the krypton storage cylinders, we planned to release this gas by controlling the release amount from the main stack, and conducted it from February 14 to April 26, 2022. In this work, all the radioactive krypton gas in the cylinders (about 7.1$$times$$10$$^{5}$$ GBq) was released at the rate of 50 GBq/min or less lower than the maximum release rate from the main stuck stipulated in safety regulations (3.7$$times$$10$$^{3}$$ GBq/min). Then, the equipment used in the controlled release of radioactive krypton gas and the main process (all systems, including branch pipes connected to the main process) were cleaned with nitrogen gas. Although there were delays due to weather, we were able to complete the controlled release of radioactive krypton gas by the end of April 2022, as originally targeted without any problems such as equipment failure.

JAEA Reports

Analysis work report on removal of spent fuel sheared powder for decommissioning of main plant

Aoya, Juri; Mori, Amami; Sato, Hinata; Kono, Soma; Morokado, Shiori; Horigome, Kazushi; Goto, Yuichi; Yamamoto, Masahiko; Taguchi, Shigeo

JAEA-Technology 2023-008, 34 Pages, 2023/06


Flush-out, by which nuclear materials in the Tokai Reprocessing Plant process are recovered, has been started in June 2022 as the first step of decommissioning. Flush-out consists of removal of spent fuel sheared powder, plutonium solution, uranium solution, and the other nuclear materials. Removal of spent fuel sheared powder has been completed in September 2022. During removal of spent fuel sheared powder, uranium concentration, plutonium concentration, acid concentration, radioactivity concentration, and solution density have been analyzed for process control. For nuclear material accountancy, uranium concentration, plutonium concentration, isotope ratio, and solution density have been analyzed. Analysis work including sample pretreatment before transportation to IAEA analytical facility for safeguards, and the other operations related to Flush-out such as calibration of analytical instruments, education, and training of operators are reported.

JAEA Reports

Physical property investigation of gloves for glove boxes in nuclear fuel reprocessing plants; Physical properties of used gloves and estimation of its life-time

Yamamoto, Masahiko; Nishida, Naoki; Kobayashi, Daisuke; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kitao, Takahiko; Kuno, Takehiko

JAEA-Technology 2023-004, 30 Pages, 2023/06


Glove-box gloves, that are used for handling nuclear fuel materials at the Tokai Reprocessing Plant (TRP) of the Japan Atomic Energy Agency, have an expiration date by internal rules. All gloves are replaced at a maximum of every 4-year. However, degrees of glove deterioration varies depending on its usage environment such as frequency, chemicals, and radiation dose. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured and technical evaluation method for the glove life-time is established. It was found that gloves without any defects in its appearance have enough physical properties and satisfies the acceptance criteria values of new gloves. Thus, it was considered that the expired gloves could be used for total of 8-year, by adding 4-year of new glove life-time. In addition, the results of extrapolation by plotting the glove's physical properties versus the used years showed that the physical properties at 8-year is on the safer side than the reported physical properties of broken glove. Also, the data are not significantly different from the physical properties of the long-term storage glove (8 and 23 years). Based on these results, life-time of gloves at TRP is set to be 8-year. The frequency of glove inspections are not changed, and if any defects is found, the glove is promptly replaced. Thus, the risk related to glove usage is not increased. The cost of purchasing gloves, labor for glove replacement, and the amount of generated waste can be reduced by approximately 40%, respectively, resulting in more efficient and rationalized glove management.

JAEA Reports

Fuel unloading work in decommissioning of the prototype fast breeder reactor Monju; First stage of Monju decommissioning project

Shiota, Yuki; Kudo, Junki; Tsuno, Hiromi; Takeuchi, Ryotaro; Ariyoshi, Hideo; Shiohama, Yasutaka; Hamano, Tomoharu; Takagi, Tsuyohiko; Nagaoki, Yoshihiro

JAEA-Technology 2023-002, 87 Pages, 2023/06


In the first stage of Monju decommissioning project, fuel unload work began to be carried out. There are two tasks in this work. One is Fuel Treatment and Storage work that gets rid of sodium on the fuel assemblies unloaded from Ex-Vessel fuel Storage Tank (EVST) and carries it in the storage pool, and the other is Fuel Unloading that the fuel assemblies in the reactor core is replaced with dummy fuels and stored in EVST. Fuel Treatment and Storage work and Fuel Unloading work are performed alternately, and 370 fuel assemblies in the core and 160 fuel assemblies in EVST are all carried to the storage pool. Monju had a large amount of sodium in the reactor vessel and EVST, and there was a residual risk of fuel failure due to the superposition of a large scale sodium fire. Therefore, in the first stage of the Monju decommissioning project, it was decided to take about 5.5 years to remove the residual risk by storing all the fuel rods in the fuel storage pool. There are few Fuel handling system of Sodium Fast Reactor in the world, so the driving record and experience are not enough. So, events that occur even if taken measure are assumed. The following three events apply to this; first, events that are difficult to prevent, events. Second, that are due to lack of experience, and final, events optimization of system is not enough. Plans were taken to suppress these events. This report summarizes the "Monju decommissioning project" work conducted so far in all four campaigns.

JAEA Reports

Application of satellite remote sensing in geological environment investigation; Development of a geobotanical remote sensing method for estimating high water table areas in a humid warm-temperate region

Koide, Kaoru

JAEA-Research 2023-003, 101 Pages, 2023/06


This study developed a geobotanical remote sensing method for estimating high water table areas such as groundwater discharge points using differences in the growth conditions of forest trees induced by moisture supply from groundwater in a humid warm-temperate forest area. A new vegetation index (VI) termed AgbNDVI (Added green band NDVI) was proposed to discriminate the differences. The AgbNDVI proved to be more sensitive to water stress on green vegetation than existing VIs: SAVI and EVI2, and possessed a strong linear correlation with the vegetation fraction. To validate the proposed method, a 23 km$$^{2}$$ study area was selected in the Tono region of Gifu Prefecture, central Japan. The AgbNDVI values were calculated from atmospheric corrected SPOT HRV data. To correctly detect high VI points, the influence factors on tree growth were identified using the AgbNDVI values, DEM and forest type data; the study area was then divided into 555 segments according to combinations of the influence factors: elevation, slope gradient, slope aspect and forest type. Thresholds for detecting high VI points were defined for each segment based on a histogram of AgbNDVI values. By superimposing the high VI points on topographic and geologic maps, most of the high VI points are clearly located on the concave/convex slopes and near the geologic boundaries prone to groundwater runoff. In addition, field investigations support the correctness of the high VI points, because the growth increments and biomass of trees (${it Pinus densiflora}$) are greater than at points other than the high VI points, and they are located around known groundwater seeps and in a high water table area. Consequently, the proposed method can be expected to provide useful information for characterizing hydrogeological structures by combining with conventional photo-geological interpretation.

Journal Articles

Improvement in the elution performance of an N,N,N',N-tetraoctyl diglycolamide impregnated extraction chromatography adsorbent using neodymium via micro-particle-induced X-ray emission analysis

Takahatake, Yoko; Watanabe, So; Arai, Tsuyoshi*; Sato, Takahiro*; Shibata, Atsuhiro

Applied Radiation and Isotopes, 196, p.110783_1 - 110783_5, 2023/06

 Times Cited Count:0 Percentile:0.01(Chemistry, Inorganic & Nuclear)

Journal Articles

Anaerobic methane-oxidizing activity in a deep underground borehole dominantly colonized by $$Ca.$$ Methanoperedenaceae

Nishimura, Hiroki*; Kozuka, Mariko*; Fukuda, Akari*; Ishimura, Toyoho*; Amano, Yuki; Beppu, Hikari*; Miyakawa, Kazuya; Suzuki, Yohei*

Environmental Microbiology Reports (Internet), 15(3), p.197 - 205, 2023/06

 Times Cited Count:1 Percentile:48.30(Environmental Sciences)

The family $$Ca.$$ Methanoperedenaceae archaea mediate anaerobic oxidation of methane (AOM). We newly developed a high-pressure laboratory incubation system and investigated groundwater from 214- and 249-m deep boreholes at Horonobe Underground Research Laboratory, Japan, where the high and low abundances of $$Ca.$$ Methanoperedenaceae archaea have been revealed, respectively. We incubated the samples amended with or without amorphous Fe(III) and $$^{13}$$C-labelled methane at an in-situ pressure of 1.6 MPa. After three to seven-day incubation, AOM activities were not detected from the 249-m sample but from the 214-m sample. The AOM rates were 93.7$$pm$$40.6 and 27.7$$pm$$37.5 nM/day with and without Fe(III) amendment. Suspended particulates were not visible in the 249-m sample on the filter, while they were abundant and contained amorphous Fe(III) and Fe(III)-bearing phyllosilicates in the 214-m sample. This supports the in-situ activity of Fe(III)-dependent AOM in the deep subsurface borehole.

Journal Articles

Status report of JAEA-AMS-TONO; Research and technical development in the last four years

Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.

Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 ($$^{14}$$C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for $$^{14}$$C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-2, JRR-3 and Hot laboratory

Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; Konda, Miki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2023-002, 81 Pages, 2023/05


Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 20 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2020.

Journal Articles

Sorption of Sn and Nb on montmorillonite at neutral to alkaline pH

Ishidera, Takamitsu; Okazaki, Mitsuhiro*; Yamada, Yoshihide*; Tomura, Tsutomu*; Shibutani, Sanae*

Journal of Nuclear Science and Technology, 60(5), p.536 - 546, 2023/05

The distribution coefficient (${it K$_{d}$}$) value of radionuclides is an important parameter in the radionuclide migration analysis in the safety assessment of the geological disposal of high-level radioactive waste. The ${it K$_{d}$}$ values must be extensively evaluated especially under conditions where they might be decreased to improve the reliability of safety assessment. In this study, the pH dependence of the ${it K$_{d}$}$ values for Sn and Nb on montmorillonite was evaluated using batch sorption experiments at neutral to alkaline pH, which might be caused by the leaching of cementitious materials and the corrosion of carbon steel. The ${it K$_{d}$}$ values were determined in the range 8 $$<$$ pH $$<$$ 12 by the experiments and were found to decrease with increasing pH. A model calculation using a thermodynamic sorption model was conducted on the measured pH dependence of the ${it K$_{d}$}$ values. Two different sorption sites were required to describe the pH dependence of the ${it K$_{d}$}$ values of Sn in the model calculation, whereas one sorption site was considered predominant in the sorption of Nb.

Journal Articles

Current status of decommissioning and waste management at the Ningyo-Toge Environmental Engineering Center

Ohashi, Yusuke; Shimaike, Masamitsu; Matsumoto, Takashi; Takahashi, Nobuo; Yokoyama, Kaoru; Morimoto, Yasuyuki

Nuclear Technology, 209(5), p.777 - 786, 2023/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

At the Ningyo-Toge Center, technical development related to uranium refining conversion and enrichment has been completed, and decommissioning of these facilities has begun. The error between the quantity of dismantled materials estimated from the facility design drawings and the actual quantity of dismantled materials was minimal when averaging over the entire Uranium Refining and Conversion Plant and Uranium Enrichment Engineering Facility, which results indicated that the preliminary estimate of the quantity of dismantled materials for decommissioning was reasonable. Most of the dismantled materials, which have no contamination history and are properly managed were able to be carried out to recyclers as non-radioactive waste (NR). In addition, the possibility of evaluating the uranium concentration of clearance level in dismantled objects was confirmed through gamma-ray measurement tests using mock-up waste.

Journal Articles

Iron-induced association between selenium and humic substances in groundwater from deep sedimentary formations

Terashima, Motoki; Endo, Takashi*; Kimuro, Shingo; Beppu, Hikari*; Nemoto, Kazuaki*; Amano, Yuki

Journal of Nuclear Science and Technology, 60(4), p.374 - 384, 2023/04

 Times Cited Count:2 Percentile:48.47(Nuclear Science & Technology)

11557 (Records 1-20 displayed on this page)