検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

SiCパワーデバイス開発のためのシミュレーション

Simulation for SiC power electronic device developments

大沼 敏治*; 宮下 敦巳; 吉川 正人; 土田 秀一*; 岩沢 美佐子*

Onuma, Toshiharu*; Miyashita, Atsumi; Yoshikawa, Masahito; Tsuchida, Hidekazu*; Iwasawa, Misako*

ワイドギャップ半導体である炭化珪素(SiC)は従来のシリコン(Si)半導体に比べて飛躍的な性能向上を実現するパワー半導体デバイスの材料として期待されている。また、SiC半導体デバイスは低損失の省エネデバイスとして開発が進められているとともに、Si半導体デバイスと同様に熱酸化により酸化絶縁膜を作製できるため、次世代のMOS型パワーデバイスとして有望である。しかし、従来のSiC MOS型パワーデバイスは、界面トラップの存在等によりチャネル移動度が理論的な予想値より遥かに小さく、優れた特性を発揮できていなかった。これらの特性を改善するためには、原子レベルで界面の構造と熱酸化の機構を明らかにすることが重要となる。SiCの熱酸化過程のシミュレーションにおいては、化学反応を伴うことと、界面においてさまざまな結合があることから、経験的なパラメータを一切用いない第一原理法が強力なツールとなるが、計算量が膨大なためこれまで行われてこなかった。地球シミュレータによる大規模な第一原理分子動力学計算によりSiCの熱酸化過程・アニーリング及び界面準位のシミュレーションが可能になったのでここに報告する。

Silicon carbide, being a wide-band-gap semiconductor, is an attractive material in the development of electronic devices operated under extreme conditions such as high power, high temperature, and high radiation. SiC is particularly attractive for use in MOS technology because among the compound semiconductors only silicon carbide has the thermal oxide SiO$$_2$$, which is a good insulator. However, it is known that SiO$$_2$$/SiC interfaces have a higher density of interface traps than SiO$$_2$$/Si interfaces and that the channel mobility of MOS devices is much lower than theoretically expected values. In order to improve these characteristics, it is important to understand the thermal oxidation process at the SiO$$_2$$/SiC interface. We performed large-scale first-principles molecular dynamics simulations of the SiO$$_2$$/SiC interface oxidation process. We also performed large-scale first-principles molecular dynamics simulations to generate amorphous SiO$$_2$$/SiC interface.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.