検索対象:     
報告書番号:
※ 半角英数字
 年 ~  年

Experimental study and empirical model development for self-leveling behavior of debris bed using gas-injection

ガス吹込みによるデブリベッドのセルフレベリング挙動に関する実験的研究と経験的モデルの開発

Cheng, S.; 田上 浩孝; 山野 秀将; 鈴木 徹; 飛田 吉春; 中村 裕也*; 竹田 祥平*; 西 津平*; Zhang, B.*; 松元 達也*; 守田 幸路*

Cheng, S.; Tagami, Hirotaka; Yamano, Hidemasa; Suzuki, Toru; Tobita, Yoshiharu; Nakamura, Yuya*; Takeda, Shohei*; Nishi, Shimpei*; Zhang, B.*; Matsumoto, Tatsuya*; Morita, Koji*

To clarify the mechanisms underlying the debris-bed self-leveling behavior, several series of experiments were elaborately designed and conducted within a variety of conditions in recent years, under the collaboration between Japan Atomic Energy Agency (JAEA) and Kyushu University. The current contribution, including knowledge from both experimental analyses and empirical model development, is focused on a recently developed comparatively larger-scale experimental facility using gas-injection to simulate the coolant boiling. Based on the experimental observation and quantitative data obtained, influence of various experimental parameters, including gas flow rate ($$sim$$ 300 L/min), water depth (180 mm and 400 mm), bed volume (3 $$sim$$ 7 L), particle size (1 $$sim$$ 6 mm), particle density (beads of alumina, zirconia and stainless steel) along with particle shape (spherical and irregularly-shaped) on the leveling is checked and compared. As for the empirical model development, aside from a base model which is restricted to calculations of spherical particles, the status of potential considerations on how to cover more realistic conditions (esp. debris beds formed with non-spherical particles), is also presented and discussed.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.