検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Study on heat transfer surface temperature variation during pool nucleate boiling by measuring instantaneous surface temperature distribution with infrared radiation camera

放射温度計による瞬時伝熱面温度分布計測による飽和プール沸騰時伝熱面温度変動に関する研究

小泉 安郎; 高橋 和希*; 上澤 伸一郎; 吉田 啓之 ; 高瀬 和之

Koizumi, Yasuo; Takahashi, Kazuki*; Uesawa, Shinichiro; Yoshida, Hiroyuki; Takase, Kazuyuki

核沸騰熱伝達素過程解明を目的として、圧力0.101MPaの下、プール沸騰熱伝達実験を行った。伝熱面には銅プリント基盤を用いた。プリント基盤の銅薄膜厚さは35$$mu$$m、ベークライト板厚さは1.57mmであった。銅薄膜は、伝熱面部及び電極部と電圧タップ部を除いてエッチングで取り除いた。伝熱面の大きさは10mm$$times$$10mmであった。銅伝熱面背面のベークライト板部分を7mm$$times$$10mmに亘って取り除き、銅薄膜背面を剥き出しにした。剥き出しになった銅薄膜背面の瞬時温度分布を計測速度120Hz、空間分解能0.315mm$$times$$0.315mmで赤外線放射温度計により測定した。限界熱流束直前の伝熱面温度は全体に亘って定常的に低い温度に維持されていた。限界熱流束点まで熱流束が上げられると、小さな高温部が現れ、他の部分は低い温度に保たれたまま、この小さな高温部は拡大、縮小を繰り返しながら次第に大きさを増し、ついにはこの高温部は拡大をはじめ伝熱面全体的に高温となり、伝熱面の物理的焼損に至った。伝熱面の物理的焼損に至る過程では、伝熱面は高温部と低温部に区分されていた。瞬時伝熱面測定結果から得られた伝熱面熱流束分布は、低温で濡らされた領域と高温部で乾いた領域に伝熱面は区分けされて、この二つの領域の境界は行き来を繰り返して次第に乾き面が大きくなり、伝熱面の物理的焼損に至る過程を明確に示していた。

Pool nucleate boiling heat transfer experiments were performed for water at 0.101 MPa to examine the elementary process of the nucleate boiling. The copper printed circuit board of a 1.57 mm thick Bakelite plate coated with a 0.035 mm thick copper membrane was used for a heat transfer surface. The size of the heat transfer surface was 10 mm $$times$$ 10 mm. Direct current was supplied to it to heat it up. The Bakelite plate of the backside of the copper layer was taken by 7 mm $$times$$ 10 mm. The instantaneous variation of the backside temperature of the heat transfer surface was measured with an infrared radiation camera. The time and the space resolution of the infrared cameras used in experiments were 120 Hz and 0.315 mm $$times$$ 0.315 mm, respectively. Surface temperatures just before the burn-out measured with 120 Hz suggest that the surface temperature was steadily low at a large part of the heat transfer surface. A small hot-dry area came out at the critical heat flux condition. Then, this small hot-dry area iterated to expand and shrink and gradually grew. Other area was still wetted and kept at low temperature. Eventually the small hot-dry area started to grow continuously and a whole part of the heat transfer surface became hot-dry to reach the physical burn-out. The heat transfer surface was divided into two large areas; the hot-dry area and the low-temperature-wetted area until the physical burn-out. The local surface heat flux variation derived from measured surface temperature variation clearly illustrated that the boundary between the dried area and the wetted area moved back and forth and the dried arear gradually grew to reach physical bourn-out at the critical heat flux condition.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.