Thermal hydraulic safety research at JAEA after the Fukushima Dai-ichi Nuclear Power Station accident
福島第一原子力発電所事故後の原子力機構における熱水力安全研究
与能本 泰介 ; 柴本 泰照 ; 竹田 武司 ; 佐藤 聡 ; 石垣 将宏 ; 安部 諭 ; 岡垣 百合亜 ; 孫 昊旻 ; 栃尾 大輔
Yonomoto, Taisuke; Shibamoto, Yasuteru; Takeda, Takeshi; Satou, Akira; Ishigaki, Masahiro; Abe, Satoshi; Okagaki, Yuria; Sun, Haomin; Tochio, Daisuke
This paper summarizes thermal-hydraulic (T/H) safety studies being conducted at JAEA based on the consideration of research issues after the Fukushima Dai-Ichi Nuclear Power Station accident. New researches have been initiated after the accident, which are related to containment thermal hydraulics and accident management (AM) measures for the prevention of core damage under severe multiple failure conditions. They are conducted in parallel with those initiated before the accident such as a research on scaling and uncertainty of the T/H phenomena which are important for the code validation. Those experimental studies are to obtain better understandings on the phenomena and establish databases for the validation of both lumped parameter (LP) and computational fluid dynamics (CFD) codes. The research project on containment thermal hydraulics is called the ROSA-SA project and investigates phenomena related to over-temperature containment damage, hydrogen risk and fission product (FP) transport. For this project, we have designed a large-scale containment vessel test facility called CIGMA (Containment InteGral Measurement Apparatus), which is characterized by the capability of conducting high-temperature experiments as well as those on hydrogen risk with CFD-grade instrumentation of high space resolution. This paper describes the plans for those researches and results obtained so far.