検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Evaluation of thermal strain induced in components of Nb$$_{3}$$Sn strand during cooling

冷却過程においてNb$$_{3}$$Sn素線に発生する熱ひずみの評価

諏訪 友音*; 辺見 努*; 齊藤 徹*; 高橋 良和*; 小泉 徳潔*; Luzin, V.*; 鈴木 裕士  ; Harjo, S.   

Suwa, Tomone*; Hemmi, Tsutomu*; Saito, Toru*; Takahashi, Yoshikazu*; Koizumi, Norikiyo*; Luzin, V.*; Suzuki, Hiroshi; Harjo, S.

Nb$$_{3}$$Sn strands, whose properties are very sensitive to stress/strain, are utilized for ITER cable-in-conduit conductor (CICC) of the central solenoids. The Nb$$_{3}$$Sn strands experience temperature range of $$sim$$1000 K from the temperature of the heat treatment with the initiation of the Nb$$_{3}$$Sn reaction to the operation temperature of $$sim$$4 K. Due to this large temperature range, large thermal strain is induced in the Nb$$_{3}$$Sn filaments due to the differences between the coefficients of thermal expansion and Young's moduli of the components of the strand. Therefore, it is considered that initial performance of the CICC is influenced by the thermal strain on the Nb$$_{3}$$Sn, and it is important to evaluate the strain state of the Nb$$_{3}$$Sn strand at low temperature. In this study, the thermal strain of the components of free Nb$$_{3}$$Sn strand was measured by neutron diffraction and stress/strain state was assessed from room temperature to low temperature. As the results of diffraction measurements, it was found that 0.111 % and 0.209 % compressive strain were generated in Nb$$_{3}$$Sn filaments at 300 and 10 K, respectively.

Access

:

- Accesses

InCites™

:

パーセンタイル:7.67

分野:Engineering, Electrical & Electronic

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.