検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Experimental investigation on fiber-coupled Raman spectrometry in presence of aerosols; Application for reactor containment gas detection in severe accident conditions

孫 昊旻   ; Porcheron, E.*; Magne, S.*; Leroy, M.*; Dhote, J.*; Ruffien Ciszak, A.*; Bentaib, A.*

Sun, Haomin; Porcheron, E.*; Magne, S.*; Leroy, M.*; Dhote, J.*; Ruffien Ciszak, A.*; Bentaib, A.*

During a severe accident (SA), hydrogen may be generated. To avoid a hydrogen explosion, it is important to monitor gas concentrations of e.g. H$$_{2}$$, O$$_{2}$$, N$$_{2}$$, H$$_{2}$$O, CO and CO$$_{2}$$ in the containment during a SA. A spontaneous Raman spectrometry (SRS) associated with a fiber-coupled probe had been developed. Since the probe had been designed to be implemented in the reactor containment, the SRS was qualified experimentally with the probe being surrounded by aerosols. Particles attached on the probe optical components (contamination) due to a continuous aerosol exposure as well as those in the atmosphere (aerosol) can cause photon-particle interactions such as light scattering (Mie) and fluorescence which may influence the Raman spectrum (RS). In our experiment, the contamination effect and the aerosol effect on the RS were investigated separately. It was found both effects increase the spectrum counts in whole wavelength range. Elementary criterion for the onset of each effect was suggested.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.