Magnetoferroelectric phase transition induced by latent spin-lattice coupling in the geometrically frustrated magnet 
玉造 博夢
; 内原 猛*; 満田 節生*; 石井 祐太*; 中尾 裕則*; 竹端 寛治*; 今中 康貴*
Tamatsukuri, Hiromu; Uchihara, Takeru*; Mitsuda, Setsuo*; Ishii, Yuta*; Nakao, Hironori*; Takehana, Kanji*; Imanaka, Yasutaka*
In multiferroic CuFe
Al
O
, applying uniaxial pressure
generates a magnetoferroelectric phase distinct from the well-studied spin-driven ferroelectric phase associated with helical magnetic ordering in this system. Using a four-circle neutron diffractometer, the magnetic structure of the
-induced magnetoferroelectric phase is determined as the collinear sinusoidal type, which itself does not break the inversion symmetry in this system. Additionally, synchrotron radiation X-ray diffraction experiments are conducted to investigate how the triangular lattice in CuFe
Al
O
is distorted by applied
. Although lattice distortion during the magnetic phase transition in CuFe
Al
O
is mitigated by the substitution of nonmagnetic Al
, the application of
along the conjugate direction revives the "latent" spin-lattice coupling, causing the triangular lattice to distort during magnetic phase transition. The application of a magnetic filed considerably reduces
-induced ferroelectric polarization, but does not affect lattice distortion. These results indicate that
-induced ferroelectric polarization is not a consequence of the piezoelectric effect. Instead, the sinusoidal magnetic structure would contribute to the emergence of
-induced ferroelectric polarization through spin-lattice coupling.