Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 781

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Surface settlement of backfilled shafts and rebackfilling of settled shafts at the Mizunami Underground Research Laboratory

Kokubu, Yoko; Takeuchi, Ryuji; Nishio, Kazuhisa*; Ikeda, Koki

JAEA-Review 2024-066, 67 Pages, 2025/03

JAEA-Review-2024-066.pdf:8.25MB

The Tono Geoscience Center of the Japan Atomic Energy Agency has undertaken backfilling and restoration activities at the Mizunami Underground Research Laboratory (MIU) site since fiscal year 2020. These activities are being conducted in accordance with "The MIU Project from FY2020 Onwards," outlining the procedures for backfilling, restoration, and environmental monitoring at the MIU site. The backfilling activity was completed in January 2022, and thereafter, the observation of the backfilled shafts was commenced. On November 6, 2023, the settlement of the backfilled surface was observed in the Main Shaft and the Ventilation Shaft. By December 5, 2023, the depth of the settlement reached 12.9 m in the Main Shaft and 27.7 m in the Ventilation Shaft. After an evaluation by the MIU safety confirmation committee, which assessed the settlement condition and recommended countermeasures, the affected areas were backfilled for safety reasons. This report summarizes the observed settlement of the backfilled surface, the subsequent rebackfilling efforts, and the condition of the surface settlement areas. The condition of the backfilled sections has been confirmed up to June 2024.

Journal Articles

Present status of the JAEA-AMS-TONO (2023FY)

Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Jinno, Satoshi; Watanabe, Takahiro; Nishio, Tomohiro*; Ogawa, Yumi; Omae, Akiomi*; Kimura, Kenji; et al.

Dai-36-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.90 - 92, 2025/03

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.

JAEA Reports

Results of environmental impact investigations as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (FY2023)

Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*

JAEA-Data/Code 2024-015, 68 Pages, 2025/02

JAEA-Data-Code-2024-015.pdf:4.25MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the environmental monitoring investigation to confirm the environmental impacts associated with the backfilling of shafts and tunnels at the Mizunami Underground Research Laboratory (MIU). This report summarizes the results of the environmental impact investigations conducted as part of the environmental monitoring investigation around the MIU Site in FY2023, which include groundwater level measurement in wells, river flow rate measurement, water analysis of Hazama river, noise and vibration surveys, and soil survey.

Journal Articles

Multi-scale synchrotron X-ray scattering studies on thermo-induced changes in structural and mechanical properties of CSH/PCE composites

Im, S.*; Jee, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Choe, H.*; Nishio, Yuhei*; Machida, Akihiko*; Tominaga, Aki; Jeon, B. H.*; Bae, S.*

Construction and Building Materials, 459, p.139742_1 - 139742_17, 2025/01

 Times Cited Count:0 Percentile:0.00(Construction & Building Technology)

JAEA Reports

Results of groundwater pressure and hydrochemical monitoring as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (FY2023)

Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*

JAEA-Data/Code 2024-011, 120 Pages, 2024/12

JAEA-Data-Code-2024-011.pdf:4.68MB
JAEA-Data-Code-2024-011-appendix(CD-ROM).zip:261.39MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydrochemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (MIU). This report summarizes the data of the groundwater pressure and hydrochemical monitoring from boreholes and so forth at and around the MIU conducted in FY2023.

Journal Articles

Giant dipole resonance photofission and photoneutron reactions in $$^{238}$$U and $$^{232}$$Th

Filipescu, D.*; Gheorghe, I.*; Goriely, S.*; Nishio, Katsuhisa; Utsunomiya, Hiroaki*; Suzaki, Fumi; Hirose, Kentaro; 10 of others*

Physical Review C, 109(4), p.044602_1 - 044602_23, 2024/04

 Times Cited Count:2 Percentile:82.04(Physics, Nuclear)

Journal Articles

Present status of the JAEA-AMS-TONO (2023FY)

Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Takahashi, Yuto*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; et al.

Dai-25-Kai AMS Shimpojiumu Hokokushu (Internet), 3 Pages, 2024/03

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.

Journal Articles

Present status of the JAEA-AMS-TONO (2022FY)

Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; Shimada, Akiomi; et al.

Dai-35-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.17 - 19, 2024/03

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.

Journal Articles

Uniaxial magnetic anisotropy of L1$$_{0}$$-FeNi films with island structures on LaAlO$$_{3}$$(110) substrates by nitrogen insertion and topotactic extraction

Nishio, Takahiro*; Ito, Keita*; Kura, Hiroaki*; Takanashi, Koki; Yanagihara, Hideto*

Journal of Alloys and Compounds, 976, p.172992_1 - 172992_8, 2024/03

 Times Cited Count:3 Percentile:26.77(Chemistry, Physical)

JAEA Reports

Results of groundwater pressure and hydro-chemical monitoring as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2022)

Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*

JAEA-Data/Code 2023-014, 118 Pages, 2024/02

JAEA-Data-Code-2023-014.pdf:4.77MB
JAEA-Data-Code-2023-014-appendix(CD-ROM).zip:249.03MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydro-chemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (MIU). This report summarizes the data of the groundwater pressure and hydro-chemical monitoring from boreholes and forth at and around the MIU conducted in FY2022. In addition, unreported hydro-chemical monitoring data from the boreholes and forth at the MIU conducted in FY2021 were also compiled.

JAEA Reports

Results of environmental impact investigations as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2022)

Takeuchi, Ryuji; Nishio, Kazuhisa*; Kokubu, Yoko

JAEA-Data/Code 2023-013, 74 Pages, 2024/01

JAEA-Data-Code-2023-013.pdf:4.2MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the environmental monitoring investigation to confirm the environmental impacts associated with the backfilling of shafts and tunnels at the Mizunami Underground Research Laboratory (MIU). This report summarizes the results of the environmental impact investigations conducted as part of the environmental monitoring investigation around the MIU Site in FY2022, which include groundwater level measurement in wells, river flow rate measurement, water analysis of Hazama river, noise and vibration surveys, and soil survey.

Journal Articles

Search for the 6$$alpha$$ condensed state in $$^{24}$$Mg using the $$^{12}$$C+$$^{12}$$C scattering

Fujikawa, Y.*; Kawabata, T.*; Adachi, S.*; Hirose, Kentaro; Makii, Hiroyuki; Nishio, Katsuhisa; Orlandi, R.; Suzaki, Fumi; 13 of others*

Physics Letters B, 848, p.138384_1 - 138384_6, 2024/01

 Times Cited Count:5 Percentile:77.95(Astronomy & Astrophysics)

Journal Articles

Laser-based angle-resolved photoemission spectroscopy with micrometer spatial resolution and detection of three-dimensional spin vector

Iwata, Takuma*; Kosa, Towa*; Nishioka, Yukimi*; Owada, Kiyotaka*; Sumida, Kazuki; Annese, E.*; Kakoki, Masaaki*; Kuroda, Kenta*; Iwasawa, Hideaki*; Arita, Masashi*; et al.

Scientific Reports (Internet), 14, p.127_1 - 127_8, 2024/01

 Times Cited Count:6 Percentile:84.86(Multidisciplinary Sciences)

Journal Articles

Neutron-production double-differential cross sections of $$^{rm nat}$$Pb and $$^{209}$$Bi in proton-induced reactions near 100 MeV

Iwamoto, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Yashima, Hiroshi*; Nishio, Katsuhisa; Sugihara, Kenta*; $c{C}$elik, Y.*; et al.

Nuclear Instruments and Methods in Physics Research B, 544, p.165107_1 - 165107_15, 2023/11

 Times Cited Count:4 Percentile:75.44(Instruments & Instrumentation)

The lack of double-differential cross-section (DDX) data for neutron production below the incident proton energy of 200 MeV hinders the validation of spallation models in technical applications, such as research and development of accelerator-driven systems (ADSs). The present study aims to obtain experimental DDX data for ADS spallation target materials in this energy region and identify issues related to the spallation models by comparing them with the analytical predictions. The DDXs for the ($$p, xn$$) reactions of $$^{rm nat}$$Pb and $$^{209}$$Bi in the 100-MeV region were measured over an angular range of 30$$^{circ}$$ to 150$$^{circ}$$ using the time-of-flight method. The measurements were conducted at Kyoto University utilizing the FFAG accelerator. The DDXs obtained were compared with calculation results from Monte Carlo-based spallation models and the evaluated nuclear data library, JENDL-5. Comparison between the measured DDX and analytical values based on the spallation models and evaluated nuclear data library indicated that, in general, the CEM03.03 model demonstrated the closest match to the experimental values. Additionally, the comparison highlighted several issues that need to be addressed in order to improve the reproducibility of the proton-induced neutron-production DDX in the 100 MeV region by these spallation models and evaluated nuclear data library.

JAEA Reports

Report of backfilling and restoration works in the Mizunami Underground Research Laboratory

Takeuchi, Ryuji; Mikake, Shinichiro; Ikeda, Koki; Nishio, Kazuhisa*; Kokubu, Yoko; Hanamuro, Takahiro

JAEA-Review 2023-007, 114 Pages, 2023/07

JAEA-Review-2023-007.pdf:12.02MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center has been conducting the Mizunami Underground Research Laboratory (MIU) Project to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan since fiscal year 1996. Backfilling and restoration works in the MIU site have been being conducted based on "the MIU Project from FY2020 onwards" which is defined the way forward of backfilling and restoration works and environmental monitoring investigations in the MIU site, since fiscal year 2020. This report summarizes the outline, process, and achievements of the construction and the safety patrol of the backfilling and restoration works in the MIU site performed from May 16, 2020 to January 16, 2022.

Journal Articles

Status report of JAEA-AMS-TONO; Research and technical development in the last four years

Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.

Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06

 Times Cited Count:2 Percentile:28.72(Instruments & Instrumentation)

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 ($$^{14}$$C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for $$^{14}$$C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.

Journal Articles

Measurement of double-differential neutron yields for iron, lead, and bismuth induced by 107-MeV protons for research and development of accelerator-driven systems

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta*; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

EPJ Web of Conferences, 284, p.01023_1 - 01023_4, 2023/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron, lead, and bismuth have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics. The measured TTNYs and DDXs were compared with calculations by the Monte Carlo transport code PHITS with its default physics model of INCL version 4.6 combined with GEM and those with the JENDL-4.0/HE nuclear data library.

Journal Articles

Evaluation of bond repair effect for ultra-high-strength concrete specimens by neutron diffraction method

Yasue, Ayumu*; Kobayashi, Kensuke*; Yoshioka, Masahiro*; Noma, Takashi*; Okuno, Koichi*; Tanaka, Seiichiro*; Hirata, Yoshikazu*; Ooka, Tokunao*; Kimura, Yoshiharu*; Nagai, Tomoya*; et al.

Journal of Advanced Concrete Technology, 21(5), p.337 - 350, 2023/05

 Times Cited Count:0 Percentile:0.00(Construction & Building Technology)

The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step, the applicability of the neutron diffraction method (NDM) to investigate the effect of repairs in UHSC specimens was examined. The experimental results showed that the NDM can measure stresses in rebars in UHSC and normal concrete specimens. Therefore, in this experiment, the NDM was used to measure the bond performance of repairs with epoxy resin around the slit in normal concrete and UHSC specimens and examine the effect of repair on the UHSC specimens. Displacement around the slit was measured using a PI-shape displacement transducer. The evaluation confirmed that the bond performance of the repaired area was recovered by resin injection regardless of the concrete strength. In addition, the displacement around the slit was smaller for the injected specimens than the noninjected specimens. These experimental results clarified that by injecting resin, the same bond repair effect could be obtained in UHSC and normal concrete specimens.

Journal Articles

Accuracy of measuring rebar strain in concrete using a diffractometer for residual stress analysis

Yasue, Ayumu*; Kawakami, Mayu*; Kobayashi, Kensuke*; Kim, J.*; Miyazu, Yuji*; Nishio, Yuhei*; Mukai, Tomohisa*; Morooka, Satoshi; Kanematsu, Manabu*

Quantum Beam Science (Internet), 7(2), p.15_1 - 15_14, 2023/05

Journal Articles

Measurement of 107-MeV proton-induced double-differential thick target neutron yields for Fe, Pb, and Bi using a fixed-field alternating gradient accelerator at Kyoto University

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

Journal of Nuclear Science and Technology, 60(4), p.435 - 449, 2023/04

 Times Cited Count:4 Percentile:54.60(Nuclear Science & Technology)

Double-differential thick target neutron yields (TTNYs) for Fe, Pb, and Bi targets induced by 107-MeV protons were measured using the fixed-field alternating gradient accelerator at Kyoto University for research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research at the Kyoto University Critical Assembly (KUCA). Note that TTNYs were obtained with the time-of-flight method using a neutron detector system comprising eight neutron detectors; each detector has a small NE213 liquid organic scintillator and photomultiplier tube. The TTNYs obtained were compared with calculation results using Monte Carlo-based spallation models (i.e., INCL4.6/GEM, Bertini/GEM, JQMD/GEM, and JQMD/SMM/GEM) and the evaluated high-energy nuclear data library, i.e., JENDL-4.0/HE, implemented in the particle and heavy iontransport code system (PHITS). All models, including JENDL-4.0/HE, failed to predict high-energy peaks at a detector angle of 5$$^{circ}$$. Comparing the energy- and angle-integrated spallation neutron yields at energies of $$le$$20 MeV estimated using the measured TTNYs and the PHITS indicated that INCL4.6/GEM would be suitable for the Monte Carlo transport simulation of ADS reactor physics experiments at the KUCA.

781 (Records 1-20 displayed on this page)