Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 110

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of the remaining spent extraction solvent in vermiculite after leaching tests via PIXE analysis

Arai, Yoichi; Watanabe, So; Hasegawa, Kenta; Okamura, Nobuo; Watanabe, Masayuki; Takeda, Keisuke*; Fukumoto, Hiroki*; Ago, Tomohiro*; Hagura, Naoto*; Tsukahara, Takehiko*

Nuclear Instruments and Methods in Physics Research B, 542, p.206 - 213, 2023/09

 Times Cited Count:1 Percentile:63.33(Instruments & Instrumentation)

Journal Articles

$$^{137}$$Cs transfer from soils contaminated by resuspended particles to Japanese mustard spinach in difficult-to-return zone of Fukushima

Tatsuno, Takahiro*; Nihei, Naoto*; Yoshimura, Kazuya; Ote, Nobuhito*

Journal of Radioanalytical and Nuclear Chemistry, 332(6), p.1677 - 1686, 2023/06

 Times Cited Count:1 Percentile:63.33(Chemistry, Analytical)

Journal Articles

JAEA-JRC collaborative development of delayed gamma-ray spectroscopy for nuclear safeguards nuclear material accountancy

Rodriguez, D.; Abbas, K.*; Bertolotti, D.*; Bonaldi, C.*; Fontana, C.*; Fujimoto, Masami*; Geerts, W.*; Koizumi, Mitsuo; Macias, M.*; Nonneman, S.*; et al.

Proceedings of INMM & ESARDA Joint Annual Meeting 2023 (Internet), 8 Pages, 2023/05

JAEA Reports

Consideration on roles and relationship between observations/measurements and model predictions for environmental consequence assessments for nuclear facilities

Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori

JAEA-Review 2022-049, 76 Pages, 2023/01

JAEA-Review-2022-049.pdf:3.74MB

Before construction and after operation of nuclear facilities, environmental consequence assessments are conducted for normal operation and an emergency. These assessments mainly aim at confirming safety for the public around the facilities and producing relief for them. Environmental consequence assessments are carried out using observations/ measurements by environmental monitoring and/or model predictions by calculation models, sometimes using either of which and at other times using both them, according to the situations and necessities. First, this report investigates methods, roles, merits/demerits and relationship between observations/measurements and model predictions which are used for environmental consequence assessments of nuclear facilities, especially holding up a spent nuclear fuel reprocessing plant at Rokkasho, Aomori as an example. Next, it explains representative examples of utilization of data on observations/measurements and results on model predictions, and considers points of attention at using them. Finally, the report describes future direction, for example, improvements of observations/measurements and model predictions, and fusion of both them.

JAEA Reports

Development of the sintering solidification method for spent zeolite to long-term stabilization (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2022-008, 116 Pages, 2022/06

JAEA-Review-2022-008.pdf:5.36MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the sintering solidification method for spent zeolite to long-term stabilization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a new sintering solidification method in which glass is added as a binder to spent zeolite which is adsorbed radionuclides such as Cs and the nuclides are immobilized by sintering them. In this project, the optimum conditions for sintering solidification and the basic performance of the sintered solidified body will be evaluated by cold tests, and they will be demonstrated by hot tests.

Journal Articles

Leaching behavior of radionuclides from samples prepared from spent fuel rod comparable to core debris in the 1F NPS

Onishi, Takashi; Maeda, Koji; Katsuyama, Kozo

Journal of Nuclear Science and Technology, 58(4), p.383 - 398, 2021/04

 Times Cited Count:9 Percentile:74.38(Nuclear Science & Technology)

JAEA Reports

Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2020-049, 78 Pages, 2021/01

JAEA-Review-2020-049.pdf:5.85MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization" conducted in FY2019.

Journal Articles

Development methodology on determination of instant release fractions for generic safety assessment for direct disposal of spent nuclear fuel

Kitamura, Akira; Akahori, Kuniaki; Nagata, Masanobu*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(2), p.83 - 93, 2020/12

Direct disposal of spent nuclear fuel (SNF) in deep underground repositories (hereafter "direct disposal") is a concept that disposal canisters stored fuel assemblies dispose without reprocessing. Behavior of radionuclide release from SNF must be different from that from vitrified glass. The present study established a methodology on determination of instant release fraction (IRF) of radionuclides from SNF, which is the one of the parameters on radionuclide release based on the latest safety assessment reports in other countries, especially for IRF values proportional to a fission gas release ratio (FGR). Recommended and maximum values of FGR have been estimated using the fuel performance code FEMAXI-7 after collecting FGR values on Japanese SNFs. Furthermore, recommended and maximum values of IRF for Japanese SNFs used in a pressurized water reactor (PWR) have been estimated using the presently obtained FGR values and experimentally obtained IRF values on foreign SNFs. The recommended and maximum IRF values obtained in the present study have been compared with those of the latest safety assessment reports in other countries.

Journal Articles

Adsorption behavior of cesium on hybrid microcapsules in spent fuel solution

Onishi, Takashi; Koyama, Shinichi; Mimura, Hitoshi*

Nihon Ion Kokan Gakkai-Shi, 31(3), p.43 - 49, 2020/10

Journal Articles

Pressure resistance thickness of disposal containers for spent fuel direct disposal

Sugita, Yutaka; Taniguchi, Naoki; Makino, Hitoshi; Kanamaru, Shinichiro*; Okumura, Taisei*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 19(3), p.121 - 135, 2020/09

A series of structural analysis of disposal containers for direct disposal of spent fuel was carried out to provide preliminary estimates of the required pressure resistance thickness of the disposal container. Disposal containers were designed to contain either 2, 3 or 4 spent fuel assemblies in linear, triangular or square arrangements, respectively. The required pressure resistance thickness was evaluated using separation distance of the housing space for each spent fuel assembly as a key model parameter to obtain the required thickness of the body and then the lid of the disposal container. This work also provides additional analytical technical knowledge, such as the validity of the setting of the stress evaluation line and the effect of the model length on the analysis. These can then be referred to and used again in the future as a basis for conducting similar evaluations under different conditions or proceeding with more detailed evaluations.

Journal Articles

Microscopic analyses on Zr adsorbed IDA chelating resin by PIXE and EXAFS

Arai, Yoichi; Watanabe, So; Ono, Shimpei; Nomura, Kazunori; Nakamura, Fumiya*; Arai, Tsuyoshi*; Seko, Noriaki*; Hoshina, Hiroyuki*; Hagura, Naoto*; Kubota, Toshio*

Nuclear Instruments and Methods in Physics Research B, 477, p.54 - 59, 2020/08

 Times Cited Count:5 Percentile:52.06(Instruments & Instrumentation)

JAEA Reports

Development of the sintering solidification method for spent zeolite to long-term stabilization (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2019-028, 71 Pages, 2020/03

JAEA-Review-2019-028.pdf:6.46MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization". The present study aims to develop the sintering solidification method for zeolites (spent zeolites) that adsorbs continuously generated radionuclides such as cesium. The sintering solidification method is able to stabilize adsorbed radionuclides such as cesium in zeolites by adding a glass as a binder to spent zeolite and sintered it. It is expected that the sintering solidification method is significantly reduce the volume of the solidified body compare with the glass solidification method and to form a stable solidified body equivalent to the calcination solidification method. In this project, we planned to select a glass suitable for the sintering solidification method and optimize the sintering temperature, etc. using non-radioactive nuclides (cold tests), and verify it by using radioactive nuclides (hot tests). In FY2018, we investigated the thermal properties of candidate glasses for binder and the effect of heating atmosphere on the sintering solidification method. Irradiated fuel for preparing simulated contaminated water containing radionuclides was selected and the condition of it was observed. In addition, we surveyed existing research results and latest research trends about solidification of zeolite, calcination solidification and so on.

Journal Articles

Quantitative analysis of Zr adsorbed on IDA chelating resin using Micro-PIXE

Arai, Yoichi; Watanabe, So; Ono, Shimpei; Nomura, Kazunori; Nakamura, Fumiya*; Arai, Tsuyoshi*; Seko, Noriaki*; Hoshina, Hiroyuki*; Kubota, Toshio*

QST-M-23; QST Takasaki Annual Report 2018, P. 59, 2020/03

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:11.54(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

${it In-situ}$ investigation of radioactive Cs mobility around litter zone in contaminated forest using spent mushroom substrata

Onuki, Toshihiko*; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya*; Sasaki, Yoshito; Niizato, Tadafumi

Journal of Nuclear Science and Technology, 56(9-10), p.814 - 821, 2019/09

 Times Cited Count:2 Percentile:20.94(Nuclear Science & Technology)

We used the spent mushroom substrata (SMSs) which are a kind of by-product after growing edible mushrooms for the ${it in-situ}$ investigation of radioactive Cs mobility in litter zone in a forest of Fukushima prefecture, Japan. The powder SMS was filled in a plastic net bag of 0.35$$times$$0.55 m, then was placed in a forest for $$sim$$6 months under three kinds of different conditions without treatment (No treatment), covered with wooden box (With box), and with zeolite placed on upper position of ground surface (With zeolite). We determined the ratio of radioactivity (TF) in the SMS to that of the soil and litter beneath the SMS bags. TFs of "No treatment" and of "With zeolite" were determined between $$sim$$0.01 and $$sim$$0.05 for 6 months. On the other hand, TFs of "With box" were lower by one order at 2 and 4 months than those of "No treatment" and of "With zeolite", and nearly the same values as TFs of "No treatment" and "With zeolite" at 6 months. These results clearly indicate that radioactive Cs accumulates in SMS mainly by throughfall. In addition, for a period of several months, fungi contribute to the accumulation of radioactive Cs in the litter zone, even though radioactive Cs was tightly associated with the soil.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 1; Overview

Kaji, Yoshiyuki; Nemoto, Yoshiyuki; Nagatake, Taku; Yoshida, Hiroyuki; Tojo, Masayuki*; Goto, Daisuke*; Nishimura, Satoshi*; Suzuki, Hiroaki*; Yamato, Masaaki*; Watanabe, Satoshi*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

In this research program, cladding oxidation model in SFP accident condition, and numerical simulation method to evaluate capability of spray cooling system which was deployed for spent fuel cooling during SFP accident, have been developed. These were introduced into the severe accident codes such as MAAP and SAMPSON, and SFP accident analyses were conducted. Analyses using Computational Fluid Dynamics (CFD) code were conducted as well for the comparison with SA code analyses and investigation of detail in the SFP accident. In addition, three-dimensional criticality analysis method was developed as well, and safer loading pattern of spent fuels in pool was investigated.

Journal Articles

Determination of $$^{107}$$Pd in Pd purified by selective precipitation from spent nuclear fuel by laser ablation ICP-MS

Asai, Shiho; Ohata, Masaki*; Yomogida, Takumi; Saeki, Morihisa*; Oba, Hironori*; Hanzawa, Yukiko; Horita, Takuma; Kitatsuji, Yoshihiro

Analytical and Bioanalytical Chemistry, 411(5), p.973 - 983, 2019/02

 Times Cited Count:12 Percentile:62.16(Biochemical Research Methods)

Determination of radiopalladium $$^{107}$$Pd is required for ensuring the radiation safety of Pd extracted from spent nuclear fuel for recycling or disposal. We employed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to simplify an analytical procedure of $$^{107}$$Pd. Pd was separated through selective Pd precipitation reaction from spent nuclear fuel. Laser ablation allows direct measurement of the Pd precipitates, skipping the dissolution and dilution procedure. In this study, $$^{102}$$Pd in natural Pd standard solution was used as an internal standard, taking advantage of its absence in spent nuclear fuel. The Pd precipitate was uniformly embedded on the surface of the centrifugal filter, forming a microscopically thin flat surface of Pd. The resulting homogeneous Pd layer is suitable for obtaining a stable signal ratio of $$^{107}$$Pd/$$^{102}$$Pd. The amount of $$^{107}$$Pd obtained by LA-ICP-MS corresponds to the values obtained by conventional solution nebulization measurement.

JAEA Reports

Development of correlation of gaseous ruthenium transfer rate to condensed water in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Yoshida, Kazuo; Tamaki, Hitoshi; Yoshida, Naoki; Amano, Yuki; Abe, Hitoshi

JAEA-Research 2017-015, 18 Pages, 2018/01

JAEA-Research-2017-015.pdf:3.08MB

An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents at a fuel reprocessing facility. It was observed at the experiments that a large amount of ruthenium (Ru) is volatilized and transfer to the vapor phase in the tank. The nitric acid and water mixed vapor released from the tank is condensed. Volatilized Ru is expected to transfer into the condensed water at the compartments in the building. Quantitative estimation of the amount of Ru transferred condensed water is key issues to evaluate the reduction the amount of Ru through leak path in the facility building. This report presents that a correlation has been developed for Ru transfer rate to condensed water with vapor condensing rate based on the experimental results and additional thermal-hydraulic simulation of the experiments. Applicability of the correlation has been also demonstrated with the accident simulation of typical facilities in full-scale.

JAEA Reports

A Guide to introducing burnup credit, preliminary version (English translation)

Okuno, Hiroshi; Suyama, Kenya; Ryufuku, Susumu*

JAEA-Review 2017-010, 93 Pages, 2017/06

JAEA-Review-2017-010.pdf:2.47MB

There is an ongoing discussion on the application of burnup credit to the criticality safety controls of facilities that treat spent fuels. With regard to such application of burnup credit in Japan, this document summarizes the current technical status of the prediction of the isotopic composition and criticality of spent fuels, as well as safety evaluation concerns and the current status of legal affairs. This report is an English translation of A Guide to Introducing Burnup Credit, Preliminary Version, originally published in Japanese as JAERI-Tech 2001-055 by the Nuclear Fuel Cycle Facility Safety Research Committee.

JAEA Reports

Development of analytical model for condensation of vapor mixture of nitric acid and water affected volatilized ruthenium behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste at fuel reprocessing facilities

Yoshida, Kazuo

JAEA-Research 2016-012, 24 Pages, 2016/08

JAEA-Research-2016-012.pdf:3.04MB

An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents. In this case, Ru volatilization increases in liquid waste temperature over 120 centigrade at later boiling and dry out phases. It has been observed at the experiments with actual and synthetic liquid waste that some amount of Ru volatilizes and transfers into condensed nitric acid solution at those phases. The nitric acid and water vapor from waste tank condenses at compartments of actual facilities building. The volatilized Ru could transfer into condensed liquid. It is key issues for quantifying the amount of transferred Ru through the facility building to simulate these thermodynamic and chemical behaviors. An analytical model has been proposed in this report based on the condensation mechanisms of nitric acid and water in vapor-liquid equilibria. It has been also carried out to review the thermodynamic properties of nitric acid solution.

110 (Records 1-20 displayed on this page)