Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2025-004, 186 Pages, 2025/07
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted from FY2021 to FY2023. The present study aims to develop an evaluation method necessary to obtain a perspective on the longterm structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2023, the final year of the three-year project, experimental and analytical research activities were performed to develop, (1) Method for evaluating the building by monitoring the response to earthquakes and other disturbances, (2) Damage detection technology for concrete structures using electromagnetic waves, (3) Evaluation method for concrete materials and structures based on damage detection information, (4) Comprehensive soundness evaluation method and a long-term maintenance plan, (5) Promotion of the research. Expected results and final goals are achieved based on the outcomes including achievements up to FY2022.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2023-048, 151 Pages, 2024/05
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2022. The present study aims to develop an evaluation method necessary to obtain a perspective on the long term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2022, the second year of the three-year plan, some tests and other activities on the following research items were conducted following FY2021, based on the specific research methods and research directions clarified in FY2021.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2022-071, 123 Pages, 2023/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2021. The present study aims to develop an evaluation method necessary to obtain a perspective on the long-term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2021, the first year of the three-year plan, the following research items were undertaken by clarifying specific research methods, setting research directions, making necessary preparations, and conducting some tests and other activities.
Ichihara, Akira; Matsuoka, Leo*; Segawa, Etsuo*; Yokoyama, Keiichi
Physical Review A, 91(4), p.043404_1 - 043404_7, 2015/04
Times Cited Count:13 Percentile:55.08(Optics)We propose a new method for isotope-selective dissociation of diatomic molecules in the gas phase by using two kinds of terahertz-pulse fields. The first field consists of a train of pulses, which composes a frequency comb, excites the selected isotope into highly-rotationally excited state. The second intense pulse field dissociates the excited molecule by further rotational excitations. We performed wave-packet computations using the lithium chlorides Li
CL and
Li
Cl to demonstrate the applicability of our method. Nearly 20% of
Li
Cl in the lowest rovibrational state is dissociated in the designed pulse fields, while the dissociation probability is negligible in
Li
Cl. This method is expected to be applicable to other diatomic molecules, and to molecular ensembles whose rotational states spread in energy.
Ichihara, Akira; Matsuoka, Leo*
no journal, ,
Separation of long-lived fission products from other isotopes is important for the research of nuclear transmutation. Recently, we proposed an isotope separation method applicable to diatomic molecules in the gas phase. In this method, two kinds of terahertz (THz) optical fields are utilized to dissociate the selected isotope molecule. In this study, we investigated the isotope-selective dissociation using the Li
Cl and
Li
Cl molecules in the rotational temperature of 70 K, where LiCl was employed as a substitute of CsI which is formed in nuclear reactors. The molecular wave-packet (WP) computation was carried out to demonstrate that the
Li
Cl molecules can be dissociated selectively by using the THz optical pulses. The obtained dissociation probabilities were 20 % for
Li
Cl, and 0.5 % for
Li
Cl, respectively. We expect that this method is applicable to other diatomic molecular ensembles whose rotational states are in the thermal distribution.