検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 9 件中 1件目~9件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Implementation of a low-activation Au-In-Cd decoupler into the J-PARC 1 MW short pulsed spallation neutron source

勅使河原 誠; 池田 裕二郎; 大井 元貴; 原田 正英; 高田 弘; 柿白 賢紀*; 野口 学*; 島田 翼*; 清板 恭一*; 村島 大亮*; et al.

Nuclear Materials and Energy (Internet), 14, p.14 - 21, 2018/01

J-PARCの1MWパルス中性子源では、中性子パルスの成形に用いるデカップラとして、異なる共鳴吸収材から構成し、1eVと高い中性子吸収エネルギーを有するAg-In-Cd合金を開発した。このデカップラによりパルス成形された中性子は、粉末解析の実験装置において最高分解能を更新したが、中性子照射によって生成される長半減期の108mAgの放射能が高いため使用済み機器の取扱においては短所であった。そこで、放射能を大幅に減らす代替材としてAuを使用したAu-In-Cd材の開発を行ってきた。しかしながら、実機のモデレータ・反射体に実用化する上で、大型のAu-In-Cd板と構造材のA5083材とをHIP接合し十分な接合強度を得ることが課題であった。本研究では、Au-In-Cd材の表面状態、大型化した熱容量の変化による接合部界面温度に関わる検討を行い、実規模大のHIP接合において、最適接合条件を見つけることができた。この結果、反射体へのAu-In-Cd材の実用化に成功し、中性子性能を損なわず、大幅な放射能低減の見通しを得た。

論文

Target station design of 1 MW spallation neutron source at the high intensity proton accelerator facilities J-PARC

高田 弘; 前川 藤夫; 本村 士郎*; 吉田 勝彦*; 寺奥 拓史*; 明午 伸一郎; 坂井 昭夫*; 春日井 好己; 兼近 修二*; 大竹 秀範*; et al.

Proceedings of ICANS-XVI, Volume 3, p.1115 - 1125, 2003/07

大強度陽子加速器計画で建設する1MW核破砕中性子源はヘリウムベッセル,ベッセルサポートシリンダ,遮蔽ブロック,23本の中性子ビームライン,陽子ビーム窓等の機器で構成される。機器はライナーの内側に配置され、ヘリウムベッセルを中心とし、その周囲を中性子ビームシャッターを含む鉄鋼製の遮蔽で取り囲む。鉄遮蔽の外周には重コンクリートを配置し、その外表面の線量率が12.5$$mu$$Sv/hを超えないことを設計条件とした。ライナーの外形は直径9.8mであり、重コンの厚さは2.2-2.7mである。ライナー内は遮蔽体の除熱とNOxガスの発生抑制のため乾燥空気を循環させる。このようなステーション構造の概要と機器構造の各論、例えば中性子ビームシャッターは2本ロッド懸垂方式の直方体状で、その一部にガイド管等を装着したダクトを挿入できる構造であること、について報告する。

論文

Design of beam incident monitor for spallation neutron target of JSNS

明午 伸一郎; 原田 正英; 寺奥 拓史*; 前川 藤夫

Proceedings of ICANS-XVI, Volume 3, p.1175 - 1180, 2003/07

大強度パルス核破砕ターゲットに入射する陽子ビームをモニターすることは重要である。J-PARCの核破砕中性子源に入射する陽子ビームモニターは、メンテナンス性を向上させるために陽子ビームウインドーのアッセンブリーと一体化している。しかしながら、ウインドーにおけるビームの散乱等によりモニター自身の発熱が著しく大きくなる恐れがある。これを評価するために、発熱計算を行いモニターの発熱は0.1W/cc以下と十分に小さいことがわかった。また本報では、モニター及び窓の寿命の予測を助けるために用いられる貫通孔などのアッセンブリーとしての設計状況について報告する。

報告書

大強度陽子加速器計画1MW核破砕中性子源施設の設計; ヘリウムベッセルの設計

本村 士郎*; 寺奥 拓史*; 吉田 勝彦*; 高田 弘; 前川 藤夫; 春日井 好己; 日野 竜太郎; 渡辺 昇; 古坂 道弘

JAERI-Tech 2003-054, 62 Pages, 2003/06

JAERI-Tech-2003-054.pdf:9.53MB

大強度加速器計画(J-PARC)の中核施設である物質・生命科学実験施設では、核破砕反応により発生した大強度の中性子を物質・生命科学等の先端分野の研究に利用する。中性子源ステーションの中心部に設置するヘリウムベッセルは、多重防護のための一つのバウンダリを形成する容器であるため、地震等に対し構造健全性を確保することが重要である。また、ヘリウムベッセルは中性子ビームラインの原点並びに方位を規定する構造体であるため、中性子ビームポートの位置・姿勢精度を確保することが重要である。ヘリウムベッセルに収納するターゲット,モデレータ,リフレクタ、並びにヘリウムベッセルに組付ける機器である陽子ビーム窓は放射線損傷を受けるため一定期間運転後にリモートハンドリングによる交換が必要となる。したがって、これら機器の遠隔操作による交換が容易かつ確実に実施しできるように支持構造,位置決め構造及びシール構造を与えることが重要である。本報告書は、このようなヘリウムベッセルについて、設計方針・設計条件の策定を行うとともに強度及び温度解析評価を行い、基本構造仕様を得た結果をまとめたものである。

報告書

1MW核破砕中性子源における陽子ビーム窓の構造設計検討

寺奥 拓史*; 寺田 敦彦*; 前川 藤夫; 明午 伸一郎; 神永 雅紀; 石倉 修一*; 日野 竜太郎

JAERI-Tech 2003-026, 77 Pages, 2003/03

JAERI-Tech-2003-026.pdf:19.78MB

原研とKEKが共同で推進している大強度陽子加速器計画(J-PARK)では、物質・生命科学研究の展開を図るため、1-MWの核破砕中性子源を建設する。陽子ビームは陽子ビーム窓を通過し、中性子源ターゲットに入射する。この陽子ビーム窓は、陽子ビームラインの高真空領域とターゲットやモデレータを格納しているヘリウムベッセル内のほぼ大気圧のヘリウム雰囲気との境界壁となる。陽子ビームとの反応で窓材料は高密度の熱を発生するため、陽子ビーム窓は軽水で冷却される。したがって、過大な熱応力や冷却水沸騰の要因となるホットスポットが発生しないように窓部における均一な流量配分を実現し、冷却水の内圧応力や発熱による熱応力に対する十分な構造強度を満足する必要がある。本報では、製作性に優れた平板型構造及び応力的に有利な曲面型構造の陽子ビーム窓を提案し、設計検討の一環として構造強度評価及び熱流動解析評価を行った。その結果、窓部では均一な冷却水の流動により十分な除熱性能が確保でき、また内部の冷却水圧力による応力及び熱応力を許容応力値以下に抑えることができたため、現設計で陽子ビーム窓として成立することを確認した。

論文

Present status of spallation neutron source development; JAERI/KEK joint project in Japan

神永 雅紀; 羽賀 勝洋; 麻生 智一; 木下 秀孝; 粉川 広行; 石倉 修一*; 寺田 敦彦*; 小林 薫*; 安達 潤一*; 寺奥 拓史*; et al.

Proceedings of American Nuclear Society Conference "Nuclear Applications in the New Millennium" (AccApp-ADTTA '01) (CD-ROM), 9 Pages, 2002/00

原研とKEKは大強度陽子加速器計画の下で中性子散乱実験施設の建設計画を進めている。核破砕中性子源としては、1MWの陽子ビーム入射を想定したクロスフロー型水銀ターゲットの設計検討を実施している。本報では、水銀ターゲット熱流動設計を中心に中性子散乱実験施設建家設計の現状,水銀熱伝達試験結果及びターゲット容器の遠隔操作実証試験装置について報告する。水銀ターゲットの熱流動解析では、陽子ビームプロファイルとしてガウス分布を想定した。入口水銀温度50$$^{circ}C$$,入口平均流速1.0m/s,内部総発熱量約0.4MWの条件で解析を行い、水銀最高温度121.5$$^{circ}C$$,容器最高温度232$$^{circ}C$$という結果を得て、熱流動的には成立することを明らかにした。また、解析で用いた熱伝達モデルは、水銀熱伝達実験結果に基づき検証した。さらに、本施設の要となるターゲットリモートハンドリング機器については、概念設計結果を基に実規模試験に着手し、所期の性能を発揮することを確認した。

報告書

Investigation for the sodium leak in MONJU; Sodium leak and fire test-I

川田 耕嗣; 寺奥 拓史; 大野 修司; 宮原 信哉; 三宅 収; 田辺 裕美

JNC-TN9400 2000-089, 258 Pages, 2000/08

JNC-TN9400-2000-089.pdf:12.26MB

「もんじゅ」2次主冷却系ナトリウム漏えい事故の原因究明の一環として、ナトリウムによる漏えい速度・漏えい形態の確認実験、ナトリウム漏えい燃焼実験-I、ナトリウム漏えい燃焼実験-IIを順次実施した。本報告は、この内のナトリウム漏えい燃焼実験-Iに関するものである。ナトリウム漏えい燃焼実験-Iは、換気空調ダクト、グレーチングでの漏えいナトリウムの燃焼および破損挙動、漏えいナトリウムの床ライナヘの影響挙動を明らかにする目的で、大規模ナトリウム漏えい燃焼試験施設(SAPFIRE)の大型密閉試験装置(SOLFA-2)を用いて実施した。実験では、「もんじゅ」と同仕様の温度計と周囲の保温構造の一部、換気空調ダグトおよびグレーチングを実機と同様に設置し、また床面には実機の床ライナと同仕様の受け皿を設置し、漏えい事故室の機器構造・配置を部分的に模擬した。実験は、480$$^{circ}C$$のナトリウムを温度計から当初約4時間にわたって漏えいさせる予定であったが、排煙処理装置の排気流量低下のため約1.5時間で終了した。各部における燃焼挙動、破損挙動等はCCDカメラ、熱電対等を用いて確認した。ナトリウム漏えい燃焼実験-Iから、以下の結果を得た。(1)温度計からのナトリウム漏えい形態は、煽ネい開始直後はフレキシブル管からの流線状の飛散後、換気空調ダクト上で跳ね返って液滴状燃焼になるのが確認された。(2)換気空調ダクトは、表面温度が約600$$sim$$約700$$^{circ}C$$の範囲であったが、「もんじゅ」で見られたような開口はなく、ダクト本体の破損は認められなかった。(3)グレーチングは、上面温度が約650$$sim$$約940$$^{circ}C$$の範囲で推移していたが、鋼板の一部に欠損や減肉が認められた。(4)床面に設置した受け皿の裏面温度は、約10分後に約700$$^{circ}C$$に達し、その後は約740$$sim$$約770$$^{circ}C$$で推移していたが、受け皿の破損はなく、最大約1mmの減肉が認められた。(5)受け皿上には、「もんじゅ」と同様にナトリウム酸化物が山状に堆積し、堆積物最下層からは、鉄とナトリウムの複合酸化物(Na4FeO3)が確認された。

報告書

ナトリウム漏えい燃焼実験-I 実験データ集

川田 耕嗣; 宮原 信哉; 田辺 裕美; 寺奥 拓史; 三宅 収

PNC-TN9450 97-005, 145 Pages, 1997/03

PNC-TN9450-97-005.pdf:2.48MB

「もんじゅ」2次冷却系ナトリウム漏えい事故の原因究明の目的で、平成8年4月8日に、大洗工学センターの大規模ナトリウム漏えい燃焼試験施設(SAPFIRE)内の大型密閉試験装置(SOLFA-2)を用い、「もんじゅ」2次系配管室の温度計、換気空調ダクト、グレーチング、床面には同仕様の受け皿等の配置を模擬してナトリウム漏えい燃焼実験-Iを行った。なお本データ集については、情報公開の一環として平成9年3月21日付けで、本社インフォメーションルーム、大洗工学センター展示館、敦賀事務所アトムプラザの3カ所で公開を開始した。

報告書

もんじゅナトリウム漏えい事故の原因究明; ナトリウム漏えい燃焼実験, I

川田 耕嗣; 大野 修司; 三宅 収; 寺奥 拓史; 宮原 信哉; 田辺 裕美

PNC-TN9410 97-036, 243 Pages, 1997/01

PNC-TN9410-97-036.pdf:12.29MB

「もんじゅ」2次主冷却系ナトリウム漏えい事故の原因究明の一環として、ナトリウムによる漏えい速度・漏えい形態の確認実験、ナトリウム漏えい燃焼実験-I、ナトリウム漏えい燃焼実験-IIを順次実施した。本報告は、この内のナトリウム漏えい燃焼実験-Iに関するものである。ナトリウム漏えい燃焼実験-Iは、換気空調ダクト、グレーチングでの漏えいナトリウムの燃焼および破損挙動、漏えいナトリウムの床ライナへの影響挙動を明らかにする目的で、大規模ナトリウム漏えい燃焼試験施設(SAPFIRE)の大型密閉試験装置(SOLFA-2)を用いて実施した。実験では、「もんじゅ」と同仕様の温度計と周囲の保温構造の一部、換気空調ダクトおよびグレーチングを実機と同様に設置し、また床面には実機の床ライナと同仕様の受け皿を設置し、漏えい事故室の機器構造・配置を部分的に模擬した。実験は、480$$^{circ}C$$のナトリウムを温度計から当初約4時間にわたって漏えいさせる予定であったが、排煙処理装置の排気流量低下のため約1.5時間で終了した。各部における燃焼挙動、破損挙動等はCCDカメラ、熱電対等を用いて確認した。ナトリウム漏えい燃焼実験-Iから、以下の結果を得た。(1)温度計からのナトリウム漏えい形態は、漏えい開始直後はフレキシブル管からの流線状の飛散後、換気空調ダクト上で跳ね返って液滴状燃焼になるのが観察された。(2)換気空調ダクトは、表面温度が約600$$sim$$約700$$^{circ}C$$の範囲であったが、「もんじゅ」で見られたような開口はなく、ダクト本体の破損は認められなかった。(3)グレーチングは、上面温度が約650$$sim$$約940$$^{circ}C$$の範囲で推移していたが、鋼板の一部に欠損や減肉が認められた。(4)床面に設置した受け皿の裏面温度は、約10分後に約700$$^{circ}C$$に達し、その後は約740$$sim$$約770$$^{circ}C$$で推移していたが、受け皿の破損はなく、最大約1mmの減肉が認められた。(5)受け皿上には、「もんじゅ」と同様にナトリウム酸化物が山状に堆積し、堆積物最下層からは、鉄とナトリウムの複合酸化物(Na4FeO3)が確認された。

9 件中 1件目~9件目を表示
  • 1