検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 79 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Comparative studies of three-dimensional analysis and measurement for establishing pulse electromagnet design

高柳 智弘; 植野 智晶*; 堀野 光喜*; 小野 礼人; 山本 風海; 金正 倫計

IEEE Transactions on Applied Superconductivity, 30(4), p.4901605_1 - 4901605_5, 2020/06

 被引用回数:0 パーセンタイル:100(Engineering, Electrical & Electronic)

A new horizontal shift bump magnet for the J-PARC RCS injection system was designed and fabricated. The magnet is a pulse magnet that repeatedly excites a trapezoidal waveform of about 1.5ms at 25Hz with the maximum current of 16kA and the voltage of 12kV. In order to design the magnets of such specifications, three-dimensional analysis of time-varying magnetic field which capable of evaluating eddy currents is required. Using one electromagnet model, the difference between the static magnetic field analysis and the dynamic magnetic field analysis, and the difference between the two-dimensional and three-dimensional analysis were compared, respectively. In addition, we also verified the analysis result and the actual measurement results carried out by the search coil and the hall probe. Finally, we established a pulse electromagnet design method. The verification results by the fabricated electromagnet are presented here.

論文

New design of vacuum chambers for radiation shield installation at beam injection area of J-PARC RCS

神谷 潤一郎; 古徳 博文; 菖蒲田 義博; 高柳 智弘; 山本 風海; 柳橋 亨*; 堀野 光喜*; 三木 信晴*

Journal of Physics; Conference Series, 1350, p.012172_1 - 012172_7, 2019/12

 被引用回数:0 パーセンタイル:100

J-PARC 3GeVシンクロトロン(RCS)における一つの課題はビーム入射部における高放射線レベルである。これはビームが荷電変換膜により散乱され、周辺機器が放射化されることが原因である。入射部での作業時の被ばくを低減するために放射線遮蔽体が必要であるが、現在の入射部では遮蔽体を設置する場所が非常に限られている。そのため、ビーム入射点のチタン製真空容器および周辺のシフトバンプ電磁石, セラミックス製ビームパイプを新しく設計し、有効な遮蔽体が設置できる空間を確保する検討を進めている。ビーム入射点の真空容器は断面を円型から矩形へ変更し、ビーム方向の長さを長くする設計とした。大気圧による真空容器の内部応力解析を行い、材料強度に対して十分に低い応力であることを明らかにした。セラミックスビームパイプは、抵抗を有したRFシールドを設置することでパルス磁場による誘起電圧をダンピングできる設計とした。これにより、新しい入射部の系では非対称となるバンプ電磁石による誘起電圧のビームへの悪影響を取り除くことができる。本報告では入射部遮蔽体設置に関わるこれらの真空機器の改造について発表する。

論文

J-PARC RCSビームコミッショニングの進捗報告; 1MW以上のビーム出力の実現に向けた取り組み

發知 英明; 原田 寛之; 林 直樹; 金正 倫計; 岡部 晃大; Saha, P. K.; 菖蒲田 義博; 田村 文彦; 山本 風海; 山本 昌亘; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.574 - 578, 2019/07

J-PARC RCSは、2018年の7月に、設計出力1MWの試験運転に成功したところである。高出力かつ安定な利用運転を実現するためには、さらに高いビーム強度でのビームの振る舞いを調査することが必要となるため、RCSでは、2018年10月と12月に、1.2MW相当の大強度試験を実施した。当初、1$$%$$程度の有意なビーム損失が出現したが、ベアチューンや横方向ペイント範囲を最適化することで、そのビーム損失を10$$^{-3}$$レベルにまで低減することに成功した。本発表では、上述の大強度試験結果、特に、その際に出現したビーム損失の発生メカニズムやその低減のために行った一連の取り組みに焦点を当てて報告する。

論文

J-PARC加速器用イグナイトロン代替半導体スイッチと新キッカー電源の開発

小野 礼人; 高柳 智弘; 植野 智晶*; 堀野 光喜*; 山本 風海; 金正 倫計

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.399 - 403, 2019/07

J-PARCでは、LINACの高周波加速用クライストロン電源のクローバー装置にイグナイトロン、RCSのキッカー電源システムにサイラトロンを用いている。イグナイトロンは、世界的に使用が制限されている水銀を使用しており、将来的に製造中止が見込まれる。そこで、MOSゲートサイリスタを用いたイグナイトロン代替用半導体スイッチを設計した。クローバー装置に使用するためには、120kV, 40kA, 50usの動作出力が必要である。1枚当たり、3kV, 40kA, 50usの動作出力を実現するオーバル型基板モジュールを製作し、仕様を満足すること確認した。また、サイラトロン代替スイッチにSiC-MOSFETを用いたLTD回路を採用したモジュール型パルス電源を製作し、RCSキッカー電源システムに必要な、立ち上がり250ns以下、フラットトップ1.5us以上を実現する。1枚当たり800V, 2kAの主回路基板26枚とフラットトップを補正する100V, 2kAの補正回路基板14枚を積み重ね、20kVの出力を実現した。試験結果について報告する。

論文

Reduction of the kicker impedance maintaining the performance of present kicker magnet at RCS in J-PARC

菖蒲田 義博; 入江 吉郎*; 高柳 智弘; 富樫 智人; 山本 昌亘; 山本 風海

Journal of Physics; Conference Series, 1067, p.062007_1 - 062007_8, 2018/10

 被引用回数:0 パーセンタイル:100

J-PARCのRCSのキッカーにはコイルが内蔵されており、そこを流れる電流が作る磁場の力でビームを出射させている。このキッカーは4つの端子を持っており、その2つが電源側につながれ、残りの2つがショートしてある。ビームをRCSから出射させる時に必要なキッカーに誘起される電流値は、この特徴のために電源から供給される電流値の2倍となる。これは、ビームを出射させる上では、必要な消費電力を節約でき、キッカーの設置スペースを節約できるという利点を持つ。一方で、この特徴のためにビームが大強度化するに従って、キッカーを通過する際に励起する電磁場(インピーダンス)は、ビームを不安定にさせることが分かっている。このようなビーム不安定性への対策は、大強度での安定的なビーム利用運転をするために必要である。本レポートでは、現在のキッカーの持つパフォーマンスを維持しながら、ビームの不安定要因であるキッカーのインピーダンスを下げる新しい手法について紹介する。

論文

Activation in injection area of J-PARC 3-GeV rapid cycling synchrotron and its countermeasures

山本 風海; 山川 恵美*; 高柳 智弘; 三木 信晴*; 神谷 潤一郎; Saha, P. K.; 吉本 政弘; 柳橋 亨*; 堀野 光喜*; 仲野谷 孝充; et al.

ANS RPSD 2018; 20th Topical Meeting of the Radiation Protection and Shielding Division of ANS (CD-ROM), 9 Pages, 2018/08

J-PARC 3GeVシンクロトロンは1MWのビーム出力を中性子ターゲットおよび主リングシンクロトロンに供給するためにビーム調整を進めている。現在は最大500kWの出力で運転を行っているが、現状最も放射化し線量が高い箇所はリニアックからのビーム軌道をシンクロトロンに合流させる入射部である。この放射化はビーム入射に使用する荷電変換フォイルとビームの相互作用によるものであるが、フォイルを使う限り必ず発生するため、周辺作業者への被ばくを低減するための遮蔽体を設置できる新しい入射システムの検討を行った。フォイル周辺は入射用電磁石からの漏れ磁場で金属内に渦電流が流れ、発熱することがこれまでの経験から判っているため、その対策として金属の遮蔽体を層状に分け、その間に絶縁体を挟む構造を考案した。遮蔽計算の結果から、9mmのステンレスの間に1mmの絶縁体を挟んでも遮蔽性能は5%程度しか低下しないことがわかった。

論文

RCSビーム入射部における低放射化・保守性向上のための真空容器のアップグレード

神谷 潤一郎; 山本 風海; 柳橋 亨*; 佐藤 篤*; 三木 信晴*

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.645 - 648, 2018/08

J-PARC 3GeVシンクロトロン(Rapid Cycling Synchrotron: RCS)のビーム入射部は、リニアックからの負水素イオンを陽子へ荷電変換する薄膜によるビーム散乱のため、真空ダクト等が放射化し残留放射線量が高いエリアである。加えて、パルス電磁石であるシフトバンプ電磁石の漏洩磁場で真空ダクトのフランジ温度が100度近くになるため、熱膨張により真空リークが発生しやすい箇所である。今後1MWのビーム出力に向けて安定運転をしていくうえで、このような状況の改善は、保守時の被ばくを低減するという観点で必須である。残留放射線量低減を目的として遮蔽体を常設するために、入射点の真空容器の構造を改良する。フランジの発熱によるリークの問題は、フランジ材料を現在の純チタン2種(耐力:約220MPa)から高強度材料であるTi-6Al-4V(耐力:約920MPa)に変更することで、高トルクでの締め付けにも耐えうるようにする。本会では、これらのアップグレードの状況について報告する。

論文

Reducing the beam impedance of the kicker at the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

菖蒲田 義博; Chin, Y. H.*; 林 直樹; 入江 吉郎*; 高柳 智弘; 富樫 智人; 外山 毅*; 山本 風海; 山本 昌亘

Physical Review Accelerators and Beams (Internet), 21(6), p.061003_1 - 161003_15, 2018/06

 被引用回数:2 パーセンタイル:58.96(Physics, Nuclear)

J-PARCの3GeVシンクロトロン(RCS)は、物質生命科学研究施設(MLF)と50GeVシンクロトン(MR)にビームを供給しているが、MRへは横方向のビームサイズを小さくする必要がある。一方、RCSのビームは横方向のビームサイズが小さくなるに従って、ビームが不安定になるが、原因は、キッカー電磁石由来のビームのインピーダンスが大きいためである。今回、我々はそのRCSのキッカー電磁石のビームのインピーダンスを下げるために、キッカー電磁石の端末をダイオードと抵抗で終端する手法を開発した。しかし、この手法では、非線形素子(ダイオード)を使うため、定量的にビームのインピーダンスを評価することが難しい。本論文では、シミュレーションと測定でそれを評価できる手法について議論した。両者の結果はよく一致し、これによってキッカー電磁石のビームのインピーダンスが確かに低減できていることが確認できた。

論文

Recent status of J-PARC rapid cycling synchrotron

山本 風海; Saha, P. K.

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1045 - 1047, 2018/06

J-PARC 3GeVシンクロトロンは現在500kWの陽子ビームを物質生命科学実験施設に、また750kW相当の粒子数の陽子ビームを主リングシンクロトロンに向けて供給している。J-PARCのような大強度加速器では、わずか0.1%のビームロスでも非常に大きな機器の放射化を引き起こし、トラブルが発生する。そのため、大強度出力での安定な運転を目指し、3GeVシンクロトロンではビーム調整を行い、その結果を基に改善を進めている。近二年では、六極電磁石および補正四極電磁石の改修により、ビーム軌道の不安定化を抑制し、より小さなエミッタンスのビームを主リングに向けて供給できるようになった。また機器の放射化も低い状態を維持したまま運転を継続しており、作業者の被ばくも非常に少なく抑えることに成功している。

論文

A New pulse magnet for the RCS injection shift bump magnet at J-PARC

高柳 智弘; 山本 風海; 神谷 潤一郎; Saha, P. K.; 植野 智晶*; 堀野 光喜*; 金正 倫計; 入江 吉郎*

IEEE Transactions on Applied Superconductivity, 28(3), p.4100505_1 - 4100505_5, 2018/04

The 3-GeV Rapid-Cycling Synchrotron at the Japan Proton Accelerator Research Complex has demonstrated a high power beam equivalent to 1 MW. Therefore, in order to realize more stable operation, we are considering an upgrade plan. Regarding the radiation protection at the upgrade plan, a new injection system has been proposed to secure enough space for radiation shielding and maintenance work. For this purpose, it is necessary to integrate the splitted iron cores of the injection shift bump magnet into one core, the length of which is shorter than the total length of the splitted iron cores. The number of coil turns for the new one core magnet is then increased from 2 to 4. The structural design of the new shift bump magnet excited at 25 Hz repetition rate is in progress from view point of eddy current losses at the magnet edge and the coil temperature by using the OPERA-3D. This paper details these aspects and outlines the new power supply briefly.

論文

J-PARC 3GeVシンクロトロンの新しい入射システムの設計

山本 風海; 神谷 潤一郎; Saha, P. K.; 高柳 智弘; 吉本 政弘; 發知 英明; 原田 寛之; 竹田 修*; 三木 信晴*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.374 - 378, 2017/12

J-PARC 3GeVシンクロトロン(RCS)は、最大1MWの大強度陽子ビームを物質生命科学実験施設および主リングシンクロトロンに供給するために設計され、運転を行っている。現在のところ、RCSでは設計値の半分である500kWの出力での連続運転に成功しているが、今後さらにビーム出力を向上し、安定な運転を達成するためには、入射点付近の残留放射能による被ばくへの対策が重要となってくる。これまでのビーム試験やシミュレーション、残留線量の測定結果等から、入射点周辺の残留放射能は、入射で使用する荷電変換用カーボンフォイルに入射及び周回ビームが当たった際に発生する二次粒子(散乱陽子や中性子)が原因であることがわかった。現状では、RCSの入射にはフォイルが必須であり、これらの二次粒子を完全になくすことはできない。そこで、これら二次粒子によって放射化された機器の周辺に遮蔽体を置けるように、より大きなスペースが確保できる新しい入射システムの検討を開始した。予備検討の結果、機器配置は成立するが、入射用バンプ電磁石磁場が作る渦電流による発熱が問題となることがわかり、その対策の検討を進めることとなった。

論文

J-PARC 3GeVシンクロトロンビームコリメータの故障原因究明作業

岡部 晃大; 山本 風海; 神谷 潤一郎; 高柳 智弘; 山本 昌亘; 吉本 政弘; 竹田 修*; 堀野 光喜*; 植野 智晶*; 柳橋 亨*; et al.

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.853 - 857, 2017/12

J-PARC 3GeVシンクロトロン(RCS)には、ビーム損失を局所化し、機器の放射化を抑制するためにビームコリメータが設置されている。RCSにて加速中に広がったビームハローは、すべてコリメータ散乱体によって散乱され、吸収体部にて回収される。2016年4月のコリメータ保守作業時に吸収体部の1つで大規模な真空漏れが発生したため、代替の真空ダクトを設置することで応急的な対処を行い、ビーム利用運転を継続した。取り外したコリメータの故障原因を特定するためには、遮蔽体を解体し、駆動部分をあらわにする必要がある。しかし、故障したコリメータ吸収体部は機能上非常に高く放射化しており、ビームが直接当たる真空ダクト内コリメータ本体では40mSv/hという非常に高い表面線量が測定された。したがって、作業員の被ばく線量管理、及び被ばく線量の低減措置をしながら解体作業を行い、故障したコリメータ吸収体の真空リーク箇所の特定に成功した。本発表では、今回の一連の作業及び、コリメータの故障原因について報告する。

論文

Worker dose under high-power operation of the J-PARC 3 GeV Rapid Cycling Synchrotron

山本 風海

EPJ Web of Conferences, 153, p.07022_1 - 07022_6, 2017/09

 被引用回数:1 パーセンタイル:24.33

J-PARC 3GeVシンクロトロンは最大1MWの大強度陽子ビームを物質生命科学実験施設および主リングに供給するため、調整を進めている。このような大強度陽子加速器では、保守作業者の被ばく線量が許容可能な範囲となるように、ビームロスの量で出力が制限される。そのため、ビームロスを低減させるためのコミッショニングと改良が続けられている。さらなる大強度出力を目指して、J-PARCの加速器施設は過去2年で大きな改造(3GeVシンクロトロンの入射エネルギー増強とリニアックピーク電流増強)が行われた。改造の後で、ビーム調整によりビームロスが減少した。そのため、出力が増加したにも拘らず、残留線量は同程度か場所によってはむしろ下げることができた。また、2016年4月にコリメータが故障し、急遽その撤去作業が発生した。コリメータは放射化が進み線量が高かったが、あらかじめ設計された遮蔽体や真空ダクト遠隔着脱装置によって、作業者の被ばく量は十分許容できるレベルであった。

論文

Achievement of a low-loss 1-MW beam operation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

發知 英明; 原田 寛之; 林 直樹; 加藤 新一; 金正 倫計; 岡部 晃大; Saha, P. K.; 菖蒲田 義博; 田村 文彦; 谷 教夫; et al.

Physical Review Accelerators and Beams (Internet), 20(6), p.060402_1 - 060402_25, 2017/06

 被引用回数:14 パーセンタイル:10.65(Physics, Nuclear)

RCSは、1MWのビーム出力を目指す世界最高クラスの大強度陽子加速器である。こうした加速器では、ビーム損失により生じる機器の放射化がビーム出力を制限する最大の要因となる。ビーム損失の原因(誤差磁場、空間電荷効果、像電荷効果等)は多様で、複数の効果が絡み合った複雑な機構でビーム損失が生じるため、その解決を果たすには、高度なビームの運動学的研究が必要となる。RCSでは、実際のビーム試験と共に、計算機上での数値シミュレーションを精力的に行ってきた。実験と計算の一致は良好で、観測されたビーム損失の発生機構の解明、また、その解決策を議論するうえで、数値シミュレーションが重大な役割を果たしている。ハードウェア系の改良と共に、こうしたビーム試験と数値シミュレーションを反復的に行うアプローチにより、RCSでは、10$$^{-3}$$という極めて少ないビーム損失で1MW相当のビーム加速を達成したところである。本論文では、RCSのビーム増強過程で顕在化したビーム損失の発生機構やその低減に向けた取り組みなど、大強度加速器におけるビーム物理に関する話題を中心に、RCSビームコミッショニングにおけるここ数年の成果を時系列的に紹介する。

論文

Improvements of vacuum system in J-PARC 3 GeV synchrotron

神谷 潤一郎; 引地 裕輔*; 滑川 裕矢*; 武石 健一; 柳橋 亨*; 金正 倫計; 山本 風海

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.3408 - 3411, 2017/06

J-PARC RCSにおける真空システムは、システム完成以来、ビームロスの低減と装置の安定運転という加速器の高度化に寄与するべく、より良い質の真空および真空装置の安定性能の向上を目標に性能向上を進めてきた。真空の質の向上については、(1)H$$^{-}$$の想定外の荷電変換によるビームロスの低減を目的とした入射ビームラインの圧力の改善、(2)パルス磁場による発熱を原因とした真空ダクトの熱膨張によるリークへの対策、(3)放出ガス源であるキッカー電磁石のin-situでの脱ガスを行い、良好な結果を得た。真空装置の安定化については、(1)ゴム系真空シールによりリークを止めていた箇所を、低いばね定数のベローズと超軽量化クランプの開発により金属シールへ変更、(2)長尺ケーブル対応のターボ分子ポンプコントローラーの開発により、電気ノイズによるコントローラーのトラブルを撲滅、(3)複数台のターボ分子ポンプの増設による、システムの信頼性向上、を行ってきた。本発表では、このようなRCS真空システムの高度化について総括的に報告する。

論文

Coupled bunch instability and its cure at J-PARC RCS

菖蒲田 義博; Saha, P. K.; 發知 英明; 原田 寛之; 高柳 智弘; 田村 文彦; 谷 教夫; 富樫 智人; 外山 毅*; 渡辺 泰広; et al.

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2946 - 2949, 2017/05

J-PARC RCSのような1MWの大強度のビームの生成を目指す加速器では、加速器の構成要素とビームは、電磁気的に相互作用(ビームの結合インピーダンス)をして、ビームが不安定になる。RCSでは、それがキッカーとの相互作用(キッカーインピーダンス)で起こることが明らかにされており、ビームを不安定にすることなく大強度のビームを達成する手法について研究がなされてきた。著者らは、最近、ビームのもつ空間電荷効果にはビームを安定化させる働きがあることを発見し、MLF行き用の横方向に大きい200$$pi$$mm.mradのエミッタンス のビームに対しては、1MWのビームを達成する手法を確立した。ところが、MR行き用の50$$pi$$mm.mradのエミッタンスの細いビームに関しては、この手法では、ビームを大強度化する上で限界がある。このレポートでは、このようなビームに対して、どのようにして大強度ビームを達成するか、その対策を議論する。また、現在のキッカーインピーダンス低減化対策の現状も報告する。

論文

New injection scheme of J-PARC rapid cycling synchrotron

山本 風海; 神谷 潤一郎; Saha, P. K.; 高柳 智弘; 吉本 政弘; 發知 英明; 原田 寛之; 竹田 修*; 三木 信晴*

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.579 - 581, 2017/05

J-PARC 3GeVシンクロトロン(RCS)は、1MWの大強度ビームを物質生命科学実験施設および主リングシンクロトロンに供給するために設計され、調整が進められている。現在の所、RCSでは設計値の半分である500kWでの連続運転に成功しているが、今後さらにビーム出力を向上するためには、入射点付近の残留放射能による被ばく対策が重要となってくる。これまでのビーム試験やシミュレーション、残留線量の測定結果等から、入射点周辺の残留放射能は入射で使用する荷電変換用カーボンフォイルに入射及び周回ビームが当たった際に発生する二次粒子(散乱陽子や中性子)が原因であることがわかった。現状では、RCSの入射にはフォイルが必須であり、これらの二次粒子を完全に無くすことはできない。そこで、これら二次粒子によって放射化された機器の周辺に遮蔽体を置けるように、より大きなスペースが確保できる新しい入射システムの検討を開始した。予備検討の結果、機器配置は成立するが、入射用バンプ電磁石磁場が作る渦電流による発熱が問題となることがわかったため、今後その対策を検討することとなった。

論文

J-PARC 3GeV RCSキッカー電磁石電源の現状

富樫 智人; 高柳 智弘; 山本 風海; 金正 倫計

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.725 - 728, 2016/11

大強度陽子加速器施設(J-PARC)の3-GeV RCS(Rapid Cycling Synchrotron)では、3GeVに加速した大強度陽子ビームの取り出しにサイラトロンスイッチを採用したキッカー電磁石電源システムを利用している。本システムの電源は、使用開始からおよそ10年が経過しているが、定期的な保守点検や消耗品の交換を実施することにより現在も順調な稼働を継続している。また、サイラトロンの取り扱いについては、長年の経験をもとにした維持管理手法の確立により高い稼働率を維持するとともに、寿命については平均で10,000時間を超える利用が可能な状況にまで改善されている。一方、消耗品については、経年的に製造中止品が増加しており、代替え品の選定が懸案となっている。また、高圧機器の絶縁と冷却に使用しているシリコン油についても耐電圧性能の劣化が進んでいる傾向があり性能の回復方法や入れ替え手順などの検討が必要となってきている。本報告では、これまでの運転状況並びに保守点検結果を交えながらキッカー電磁石電源の現状について報告する。

論文

J-PARC 3GeVシンクロトロンビームコリメータの故障事象

山本 風海; 岡部 晃大; 神谷 潤一郎; 吉本 政弘; 竹田 修; 高柳 智弘; 山本 昌亘

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.314 - 318, 2016/11

2007年のRCSの運転開始以後、ビームコリメータではこれまで不具合は起きていなかったが、2016年4月の保守作業時に真空漏れが発生した。ビームコリメータはその機能の上から、非常に放射化することが予想されていたため、真空フランジを遠隔から着脱するためのリモートクランプシステムをはじめとして、作業中の被ばく量を低減するための準備がなされていた。そのため、今回故障が発生してから代わりのダクトへの入れ替えを行うに際して、ビームが直接当たるコリメータ本体では40mSv/hという非常に高い表面線量が測定されたにも関わらず、作業者の被ばく線量は最大でも60マイクロSvに抑えることに成功した。本発表では、コリメータの故障から復旧までの状況について報告する。

論文

J-PARC 3GeV陽子シンクロトロンにおける1MW運転時のビーム損失とその低減

發知 英明; 原田 寛之; 加藤 新一; 金正 倫計; 岡部 晃大; Saha, P. K.; 菖蒲田 義博; 田村 文彦; 谷 教夫; 渡辺 泰広; et al.

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.61 - 65, 2016/11

J-PARC 3-GeV RCSでは、2015年の夏季作業期間にRF電源の増強を行い、その直後の10月より1MWのビーム調整を再開した。10月のビーム試験では、RFフィードフォワード調整やペイント入射の導入により、縦方向のビーム損失や空間電荷由来の横方向のビーム損失を最小化させると共に、色収差や加速過程のチューンをコントロールすることでビームの不安定化を抑制することに成功した。また、その後のビーム試験では、新規導入した補正四極電磁石と共にAnti-correlatedペイント入射を併用することでペイント入射範囲の拡幅を実現し、その結果、入射中の荷電変換フォイル上での散乱現象に起因したビーム損失を大幅低減させることに成功した。2015年10月以降に行った一連のビーム調整により、1MW運転時のビーム損失は、十分に許容範囲内といえるレベルにまで低減された。本発表では、ビーム増強過程で実際に我々が直面したビーム損失の発生機構やその低減に向けた取り組みなどを中心に、RCSビームコミッショニングの進捗状況を報告する。

79 件中 1件目~20件目を表示