検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 152 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Analysis of transport behaviors of cesium and iodine in VERDON-2 experiment for chemical model validation

塩津 弘之; 伊藤 裕人*; 石川 淳; 杉山 智之; 丸山 結

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11

The VERDON-2 experiment for FPs transport in steam environment was analyzed with the mechanistic FPs transport code incorporating thermodynamic chemical equilibrium model in order to assess its predictive capability for transport behavior of key FPs, especially for highly volatile FPs such as Cs and I. The present analysis reproduced well the Cs deposition profile obtained from the experiment, which revealed that Cs was transported as CsOH in early phase of FP release from fuel, and then formed Cs$$_{2}$$MoO$$_{4}$$ after increasing Mo release. On the other hand, the deposition peak of I was predicted to appear at 720 K, which was significantly higher than the experimental result at 600 K. This discrepancy was potentially caused by the following two points: lack of the other stable species in thermodynamics database for thermodynamic chemical equilibrium model, or failure of chemical equilibrium assumption for iodide species.

論文

Computational fluid dynamics analysis for hydrogen deflagration tests at ENACCEF2 facility

Trianti, N.; 佐藤 允俊*; 杉山 智之; 丸山 結

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

Simulation techniques have been developed to analyze the deflagration behavior of hydrogen generated during a hypothetical severe accident in nuclear power plants. The CFD analysis was carried out on the hydrogen deflagration experiment performed at the ENACCEF2 facility composed mainly of a vertical cylindrical tube filled with hydrogen-air mixture and nine annular obstacles were placed in the lower part of the tube. The simulation was carried out by the reactingFoam solver of OpenFOAM 3.0, an open source software for the CFD analysis. The RNG (Renormalization group) k-$$varepsilon$$ model was applied for turbulent flow. The interaction of the chemical reaction with the turbulent flow was considered using PaSR (Partial Stirred Reactor) model with 19 elementary reactions for the hydrogen combustion. The analysis result showed the characteristic of flame acceleration by the obstacle region was qualitatively reproduced even though has discrepancy with the experiment.

報告書

CHEMKEq; 化学平衡論及び反応速度論の部分混合モデルに基づく化学組成評価コード(受託研究)

伊藤 裕人*; 塩津 弘之; 田中 洋一*; 西原 慧径*; 杉山 智之; 丸山 結

JAEA-Data/Code 2018-012, 42 Pages, 2018/10

JAEA-Data-Code-2018-012.pdf:4.93MB

原子力施設事故時において施設内を移行する核分裂生成物(FP)の化学組成は、比較的遅い反応の影響を受けることにより化学平衡を仮定して評価した組成とは異なる場合が想定される。そのため、反応速度を考慮した化学組成評価が求められる。一方で、原子力施設事故時の複雑な反応に関する反応速度の知見は現状では限られており、実機解析に適用できるデータベースの構築に至っていない。そこで、FP化学組成評価における反応速度による不確かさの低減のため、化学平衡論及び反応速度論の部分混合モデルに基づく化学組成評価コードCHEMKEqを開発した。このモデルは、系全体の質量保存則の下、前駆平衡と見なせる化学種を化学平衡論モデルにより評価し、その後の比較的遅い反応を反応速度論モデルにより解くものである。さらにCHEMKEqは、本混合モデルに加え一般的な化学平衡論モデル及び反応速度論モデルが使用可能であり、かつ、それらモデル計算に必要なデータベースを外部ファイル形式とすることで汎用性の高い化学組成評価コードとなっている。本報は、CHEMKEqコードの使用手引書であり、モデル, 解法, コードの構成とその計算例を記す。また付録には、CHEMKEqコードを使用する上で必要な情報をまとめる。

論文

Sensitivity analysis of source term in the accident of Fukushima Dai-ichi Nuclear Power Station Unit 1 using THALES2/KICHE

玉置 等史; 石川 淳; 杉山 智之; 丸山 結

Proceedings of Asian Symposium on Risk Assessment and Management 2018 (ASRAM 2018) (USB Flash Drive), 6 Pages, 2018/10

福島第一原子力発電所で生じた事故では、津波を原因とした電源喪失により、炉心損傷及び格納容器の損傷に至り核分裂性物質が環境に放出された。事故時に計測されたデータ及び事故進展解析、また、事故を起こしたプラントの建屋及び格納容器内部の調査により、事故進展の理解は進んでいる。一方でプラント内事故進展解析と放出された放射性物質の拡散解析の連携解析を行っている例は多くはない。原子力機構では、シビアアクシデント解析と確率論的事故影響評価との連携解析を計画している。この連携解析では、多くの不確かな要因による幅広い不確かさ幅が予想される。この連携解析を効率的に行うため、事故を起こしたプラントのうち、はじめに環境へのFP放出があった1号機を対象に、格納容器の破損箇所及び漏えい面積について、原子力機構で開発しているTHALES2/KICHEを用いた感度解析を行った。想定する格納容器の破損個所は、ヘッドフランジ、ペネトレーションシール及び真空破壊弁配管とした。これに加え、ベント弁の一部開を想定した解析結果も含め、報告する。

論文

Evaluation of chemical speciation of iodine and cesium considering fission product chemistry in reactor coolant system

石川 淳; Zheng, X.; 塩津 弘之; 杉山 智之; 丸山 結

Proceedings of Asian Symposium on Risk Assessment and Management 2018 (ASRAM 2018) (USB Flash Drive), 6 Pages, 2018/10

Japan Atomic Energy Agency is pursuing the development and application of the methodologies on fission product (FP) chemistry for source term analysis by using integrated severe accident analysis code THALES2/KICHE. Generally, specific chemical forms of iodine and cesium such as cesium iodide (CsI) and cesium hydroxide (CsOH) were assumed in the source term analysis for light water reactors using an integrated severe accident analysis code. The accident at the Fukushima Dai-ichi Nuclear Power Station leads possible chemical effects of B$$_{4}$$C control materials and atmosphere on chemical speciation of iodine and cesium such as cesium metaborate (CsBO$$_{2}$$) and hydrogen iodide (HI). The difference of chemical speciation affects not only the FP behavior in the reactor coolant system (RCS) and transport to containment but also pH value of the suppression pool water in the containment. The pH value is one of the influential factors on the release of gaseous iodine (I$$_{2}$$ and organic iodine) from containment liquid phase. In the present study, the improvement of the THALES2/KICHE code in terms of FP chemistry in RCS was performed and applied to source term analysis for severe accidents at a boil water reactor with Mark-I containment vessel. This paper discusses the chemical speciation of iodine and cesium, and FP behavior and transport to containment.

論文

Severe accident scenario uncertainty analysis using the dynamic event tree method

Zheng, X.; 玉置 等史; 石川 淳; 杉山 智之; 丸山 結

Proceedings of 14th International Conference on Probabilistic Safety Assessment and Management (PSAM-14) (USB Flash Drive), 10 Pages, 2018/09

Several types of uncertainties exist during the simulation of a severe accident. These may result from incomplete knowledge about the plant systems, accident progression and oversimplified numerical models. Among them, parameter uncertainty can be treated via Monte-Carlo-sampling-based methods. To tackle the severe accident scenario uncertainty, we must resort to advanced dynamic probabilistic risk assessment (PRA) methods. In this paper, authors reviewed the previous dynamic PRA methods and tools, and then performed a preliminary scenario uncertainty analysis, by using an integrated SA code (THALES2) and a scenario generator (RAPID, risk assessment with plant interactive dynamics), both being developed at JAEA. THALES2 is a fast-running severe accident code for the simulation of severe accident progression and source term in light water reactors. Typical scenarios of station-blackout (SBO)-initiated accidents in boiling water reactors are generated and simulated. The dynamic event tree (DET) method is applied to consider the stochastic uncertainties during the scenario progression. Major groups of SBO sequences with the similar accident characteristics can be found. To provide a reference value for risk, a conditional core damage frequency is calculated accordingly. This is a preliminary analysis for severe accident scenario uncertainty quantification at JAEA, and further DPRA researches are in progress.

論文

Influence of chemical speciation in reactor cooling system on pH of suppression pool during BWR severe accident

塩津 弘之; 石川 淳; 杉山 智之; 丸山 結

Journal of Nuclear Science and Technology, 55(4), p.363 - 373, 2018/04

 パーセンタイル:100(Nuclear Science & Technology)

The influences of chemical speciation for Cs-I-Te-Mo-Sn-B-C-O-H system, simulating a state in the reactor cooling system (RCS) of BWR, on pH of the suppression chamber (S/C) water pool were analytically investigated with PHREEQC code. Major conditions were chosen on the basis of the outputs from a BWR severe accident analysis by THALES2 code and chemical thermodynamic analysis with VICTORIA2.0 code. The chemical thermodynamic analysis showed that the chemical speciation of important volatile FPs, Cs and I, was strongly influenced by Mo and B$$_{4}$$C control material. As a consequence, pH of the S/C water pool was predicted to range from approximately 6 to 10, depending on the fraction of volatile FPs transported from the RCS to the S/C water pool and the H$$_{2}$$/H$$_{2}$$O ratio associated with the oxygen potential. It was implied that the formation of volatile I species such as I$$_{2}$$ in the S/C water pool was larger by 3 orders at the lowest pH than that at the highest pH.

論文

Application of Bayesian approaches to nuclear reactor severe accident analysis

Zheng, X.; 玉置 等史; 塩津 弘之; 杉山 智之; 丸山 結

Proceedings of Asian Symposium on Risk Assessment and Management 2017 (ASRAM 2017) (USB Flash Drive), 11 Pages, 2017/11

Nuclear reactor severe accident simulation involves uncertainties, which may result from incompleteness of modeling of accident scenarios, selection of alternative models and unrealistic setting of parameters during the numerical simulation, etc. Both deterministic and probabilistic methods are required to reach reasonable estimation of risk for severe accidents. Computational codes are widely used for the deterministic accident simulations. Bayesian approaches, including both parametric and nonparametric, are applied to the simulation-based severe accident researches at Japan Atomic Energy Agency (JAEA). In the paper, an overview of these research activities is introduced: (1) Dirichlet process models, a nonparametric Bayesian approach, are applied to source term uncertainty and sensitivity analyses; (2) Gaussian process models are applied to the optimization for operations of severe accident countermeasures; (3) Nonparametric models, include models based on Dirichlet process and K-nearest neighbors algorithm, are built to predict the chemical forms of fission products. Simplified models are integrated into the integral severe accident code, THALES2/KICHE; (4) We have also launched the research of dynamic probabilistic risk assessment (DPRA), and because a great number of accident scenarios will be generated during DPRA, Bayesian approaches would be useful for the boosting of computational efficiency.

論文

Current status of research for the accident of evaporation to dryness caused by boiling of reprocessed high level radioactive liquid waste

玉置 等史; 吉田 一雄; 阿部 仁; 杉山 智之; 丸山 結

Proceedings of Asian Symposium on Risk Assessment and Management 2017 (ASRAM 2017) (USB Flash Drive), 9 Pages, 2017/11

高レベル放射性廃液の蒸発乾固事故は再処理施設において想定されるシビアアクシデントの一つである。この事故は事故進展の特徴を踏まえ、3段階に分割できる。この事故による放射性物質の環境への放出量を評価するためには、それぞれの段階において、核分裂性物質の液相から気相への移行量や壁等への沈着量を評価することが重要である。本論文では、放射性物質の放出量評価のために様々な実験等の研究をレビューし、現時点での本事故に対する放射性物質放出量評価の現状を紹介するとともに、原子力機構における最近の本事故に対するシミュレーションコードの開発状況について説明を行う。

論文

Fluid dynamic analysis on hydrogen deflagration in vertical flow channel with annular obstacles

松本 俊慶; 佐藤 允俊; 杉山 智之; 丸山 結

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 6 Pages, 2017/07

Hydrogen combustion including deflagration and detonation could become a significant threat to the integrity of containment vessel or reactor building in a severe accident of nuclear power stations. In the present study, numerical analyses were carried out for the ENACCEF No.153 test to develop computational techniques to evaluate the flame acceleration phenomenon during the hydrogen deflagration. This experiment investigated flame propagation in the hydrogen-air premixed gas in a vertical channel with flow obstacles. The reactingFoam solver of the open source CFD code, OpenFOAM, was used for the present analysis. Nineteen elementary chemical reactions were considered for the overall process of the hydrogen combustion. For a turbulent flow, renormalization group (RNG) k-e two-equation model was used in combination with wall functions. Three manners of nodalization were applied and its influences on the flame propagation acceleration were discussed.

論文

Source term analysis considering B$$_{4}$$C/steel interaction and oxidation during severe accidents

石川 淳; 塩津 弘之; 杉山 智之; 丸山 結

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 7 Pages, 2017/07

The Japan Atomic Energy Agency (JAEA) is pursuing the development and application of the methodologies on fission product (FP) chemistry for source term analysis by using the integrated severe accident analysis code THALES2. In the present study, models for the eutectic interaction of boron carbide (B$$_{4}$$C) with steel and the B$$_{4}$$C oxidation were incorporated into THALES2 code and applied to the source term analyses for a boiling water reactor (BWR) with Mark-I containment vessel (CV). Two severe accident sequences with drywell (D/W) failure by overpressure initiated by loss of core coolant injection (TQUV sequence) and long-term station blackout (TB sequence) were selected as representative sequences. The analyses indicated that a much larger amount of species from the B$$_{4}$$C oxidation was produced in TB sequence than TQUV sequence. More than a half of carbon dioxide (CO$$_{2}$$) produced by the B$$_{4}$$C oxidation was predicted to dissolve into the water pool of the suppression chamber (S/C), which could largely influence pH of the water pool and consequent formation and release of volatile iodine species.

論文

Thermofluid dynamic analysis for THAI tests with passive hydrogen recombiner

佐藤 允俊; 松本 俊慶; 杉山 智之; 丸山 結

Proceedings of 8th European Review Meeting on Severe Accident Research (ERMSAR 2017) (Internet), 12 Pages, 2017/05

In this study, thermofluid dynamic analyses were carried out for 3 tests, HR3, HR5 and HR12 in the OECD/NEA THAI project, with the Passive autocatalytic recombiner (PAR) manufactured by AREVA. The major parameters in these 3 tests were the initial pressure and steam concentration in the test vessel. The analyses were performed with an open source computational fluid dynamics code, OpenFOAM. The solver was modified by embedding the correlation equations of hydrogen recombination rate for the PAR. The results from the present analyses indicated that the modified solver well reproduced the measured characteristics for PAR behaviour such as hydrogen recombination rate, flow velocity and temperature distribution, hydrogen and oxygen concentration, and so on.

論文

Bayesian optimization analysis of containment-venting operation in a Boiling Water Reactor severe accident

Zheng, X.; 石川 淳; 杉山 智之; 丸山 結

Nuclear Engineering and Technology, 49(2), p.434 - 441, 2017/03

Containment venting is one of essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach, from a simulation-based perspective, to the venting operations by using an integrated severe accident code, THALES2/KICHE. The effectiveness of containment venting strategies needs to be verified via numerical simulations based on various settings of venting conditions. The number of iterations, however, needs to be controlled for cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using Gaussian process regression, a surrogate model of the "black-box" code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. The number of code queries is largely reduced for the optimum finding, compared with pure random searches. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

論文

Improvement of ex-vessel molten core behavior models for the JASMINE code

松本 俊慶; 川部 隆平; 杉山 智之; 丸山 結

Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 9 Pages, 2016/11

シビアアクシデント時に溶融炉心が圧力容器外に放出される場合の格納容器破損防止対策として、事前注水や格納容器スプレイによりペデスタルやキャビティに予め水を張ることが考えられている。このときの燃料デブリ冷却性を評価するため、JASMINEコードの溶融炉心挙動モデルを改良した。溶融炉心がジェット状に水中に落下する際、水との相互作用により粒子状のデブリを放出する(ブレークアップ)。冷却性に影響を及ぼすデブリ粒径分布の取り扱いを改良し、スウェーデン王立工科大学(KTH)で実施されたジェットブレークアップ実験DEFOR-Aの解析を行い、実験結果と比較した。また、溶融ジェットが床面に到達するとメルトプールを形成し、水平方向に広がる。冷却性評価で重要となる広がり面積を評価するため、クラスト形成モデル等を導入し、同じくKTHで実施されたメルト広がり実験PULiMSの解析を行い、実験結果と比較した。両現象の評価精度の向上に向けて、さらなる改良点を検討した。

論文

Analysis with CFD code for THAI test on thermal-hydraulics during PAR activation

佐藤 允俊; 松本 俊慶; 杉山 智之; 丸山 結

Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 10 Pages, 2016/11

A numerical analysis was carried out on the thermal-hydraulic behavior during the operation of the PAR for the HR-5 test conducted in the OECD/NEA THAI project. In the HR-5 test, measurements were performed in the test vessel on the volume fractions of oxygen and hydrogen, gas temperature, pressure, flow velocity at the PAR inlet and so on. The open source code OpenFOAM was used for the present study with the reactingFoam solver which is appropriate to treat thermal-hydraulic phenomena including chemical reactions. The code was implemented with the correlation equations for the PAR used in the HR-5 and was modified to be capable of calculating the gas composition change during the recombination of hydrogen and oxygen. Comparison was made between the analysis and experimental results in the gas volume fraction and so on. It was shown that the analyses well reproduced the recombination behavior at the PAR and influences of the recombination heat on the thermal-hydraulic behavior.

論文

Bayesian optimization analysis of containment venting operation in a BWR severe accident

Zheng, X.; 石川 淳; 杉山 智之; 丸山 結

Proceedings of 13th Probabilistic Safety Assessment and Management Conference (PSAM-13) (USB Flash Drive), 10 Pages, 2016/10

Containment venting is one of essential measures to protect the integrity of the final barrier of a nuclear reactor, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to the planning of containment-venting operations by using THALES2/KICHE. Factors that control the activation of the venting system, for example, containment pressure, amount of fission products within the containment and pH value in the suppression chamber water pool, will affect radiological consequences. The effectiveness of containment venting strategies needs to be confirmed through numerical simulations. The number of iterations, however, needs to be controlled for cumbersome computational burden of severe accident codes. Bayesian optimization is a computationally efficient global optimization approach to find desired solutions. With the use of Gaussian process regression, a surrogate model of the "black-box" code is constructed. According to the predictions through the surrogate model, the upcoming location of the most probable optimum can be revealed. The number of code queries is largely reduced for the optimum finding, compared with simpler methods such as pure random search. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies under BWR severe accident conditions.

論文

Improved-EDC tests on the Zircaloy-4 cladding tube with an outer surface pre-crack

篠崎 崇*; 宇田川 豊; 三原 武; 杉山 智之; 天谷 政樹

Journal of Nuclear Science and Technology, 53(9), p.1426 - 1434, 2016/09

 被引用回数:6 パーセンタイル:17.95(Nuclear Science & Technology)

In order to investigate the failure behavior of fuel cladding under a reactivity-initiated accident (RIA) condition, biaxial stress tests on unirradiated Zircaloy-4 cladding tube with an outer surface pre-crack were carried out under room temperature conditions by using an improved Expansion-Due-to-Compression (improved-EDC) test method which was developed by Japan Atomic Energy Agency (JAEA). The specimens with an outer surface pre-crack were prepared by using RAG (Rolling After Grooving) method. In each test, a constant longitudinal tensile load of 0, 5.0 or 10.0 kN was applied along the axial direction of specimen, respectively. All specimens failed during the tests, and the morphology at the failure opening of the specimens was similar to that observed in the result of post-irradiation examinations of high burnup fuel which failed during a pulse irradiation experiment. The longitudinal strain ($$varepsilon$$$$_{tz}$$) at failure clearly increased with increasing longitudinal tensile loads and the circumferential strain ($$varepsilon$$$$_{ttheta}$$) at failure significantly decreased in the case of 5.0 and 10.0 kN tests, compared with the case of 0 kN tests. It is considered that the data obtained in this study can be used as a fundamental basis for quantifying the failure criteria of fuel cladding under a biaxial stress state.

論文

Recent research activities using NSRR on safety related issues

宇田川 豊; 杉山 智之*; 天谷 政樹

Proceedings of 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (CD-ROM), p.1183 - 1189, 2016/04

JAEA launched ALPS-II program in 2010 in order to obtain regulatory data for advanced fuels. Five new reactivity-initiated accident (RIA) simulated tests on the advanced fuels have been performed. The first two fuels tested, VA-5 and VA-6, were 17$$times$$17-PWR-type with stress-relieved and recrystallized M-MDA cladding tube, and irradiated to ~80 GWd/tU. The cladding failed due to the pellet-cladding mechanical interaction. Fission gas dynamics tests to promote a better understanding of the behavior of fission gas during an RIA are planned. A recent qualification test on a prototype pressure sensor demonstrated its ability to obtain history data of transient fission gas release. JAEA also launched a new experiment program using NSRR to investigate fuel degradation behaviors in the temperature region beyond-DBA LOCAs.

論文

Behavior of high burnup advanced fuels for LWR during design-basis accidents

天谷 政樹; 宇田川 豊; 成川 隆文; 三原 武; 杉山 智之

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2015), Part.2 (Internet), p.10 - 18, 2015/09

高燃焼度領域での燃料性能を向上させるとともに既設の原子炉の安全性を向上させるため、高耐食性被覆管や核分裂生成ガス放出を抑えたペレットで構成された改良型燃料が事業者や燃料メーカによって開発されてきた。このような改良型燃料の現行の規制基準や安全裕度の妥当性を評価するため、またこれらに係る将来の規制のためのデータベースを提供するため、原子力機構はALPS-IIと呼ばれる新しい研究プロクラムを開始した。このプログラムは、欧州から輸送された高燃焼度改良型燃料を対象とした反応度事故(RIA)模擬試験及び冷却材喪失事故(LOCA)模擬試験から主に構成されている。本論文では、このプログラムの概要及び現在までに得られているRIA及びLOCA模擬試験結果について述べる。

論文

Experimental analysis with RANNS code on boiling heat transfer from fuel rod surface to coolant water under reactivity-initiated accident conditions

宇田川 豊; 杉山 智之; 鈴木 元衛; 天谷 政樹

IAEA-TECDOC-CD-1775; Proceedings of Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents (CD-ROM), p.200 - 219, 2015/00

In order to promote a better understanding of the temperature evolution of fuel rod under reactivity initiated accident (RIA) conditions, we have investigated the effects of coolant subcooling, flow velocity, pressure, and cladding pre-irradiation on the heat transfer from fuel rod surface to coolant water during RIA boiling transient, based on a computational analysis with the RANNS code on the transient data from RIA-simulating experiments in the NSRR. The analysis showed that the film boiling heat transfer coefficients during RIA boiling transient increase with coolant subcooling, flow velocity, and pressure as predicted by the model for stable film boiling. The estimated boiling heat transfer coefficients were significantly larger than those predicted by semi-empirical correlations for stable film boiling. The analysis also suggested that the heat transfers during both transition and film boiling phases are strongly enhanced by pre-irradiation of the cladding.

152 件中 1件目~20件目を表示