検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 7 件中 1件目~7件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

報告書

固体廃棄物処理技術開発施設(LEDF)の合理化設計: セル消火実証試験

瀧田 孝治; 堂野前 寧; 松本 誠弘; 菊地 豊; 加藤 徳義; 宮崎 仁; 谷本 健一

JNC TN9410 2002-010, 62 Pages, 2002/11

JNC-TN9410-2002-010.pdf:2.37MB

固体廃棄物処理技術開発施設(LEDF)のセル消化設備の気化器は、コストが高く施設の合理化設計の一環として削減する計画としている。気化器を削減した場合、液化炭酸ガスをセル内に直接放出することとなり、放出した液化炭酸ガスの急激な気化膨張によるセル内の圧力挙動及び消化性能を把握する必要がある。そこで、火災実験室を用いて平成11年度にセル消化実証試験(I)として、液化炭酸ガス放出時の火災実験室内の圧力挙動と可燃物燃焼時の消化性能を確認した。しかし、この試験は機密性のない火災実験室で実施したため、さらに実際のセルを想定した機密性の高い条件下での液化炭酸ガス放出時の圧力挙動を把握する必要がある。このため、大洗工学センター内の大型密封装置(SOLFA-2)を用いてセル消化実証試験(II)を実施した。 得られた成果は、以下の通りである。1)槽内の圧力挙動を把握するため、SOLFA-2の内部圧力は-50mmH2Oに設定し液化炭酸ガスを放出した。その結果、槽内圧力は液化炭酸ガス放出直後に急激に下降し、その後徐々に上昇して短時間で急上昇過程を経てなだらかに下降するという傾向が見られた。2)上記の短時間で急上昇する過程は、槽内に放出した液化炭酸ガスの一部がドライアイスに変化して堆積したものが周囲の熱を奪い昇華して、再び気化することが主な要因と考えられる。3)槽内最低平均温度は全域放出方式において約-48$$^{circ}C$$となり、局所放出方式では約-60$$^{circ}C$$となった。4)セル内圧力を負圧保持する条件として、液化炭酸ガス放出量を槽内空気の排気流量に対し、約85%に設定することで、負圧を維持できることを見出した。5)槽内圧力の急激な上昇を抑制するには、液化炭酸ガスをゆっくり放出することが効果的であることがわかった。

報告書

固体廃棄物処理技術開発施設(LEDF)合理化設計-セル消火実証試験(III)-

堂野前 寧; 松本 誠弘; 瀧田 孝治; 菊地 豊; 加藤 徳義; 宮崎 仁; 谷本 健一

JNC TN9410 2002-008, 68 Pages, 2002/07

JNC-TN9410-2002-008.pdf:2.89MB

固体廃棄物処理技術開発施設(LEDF)のセル消火設備における気化器は、コストが高く施設の合理化設計の一環として削減する計画としている。気化器を削減した場合、直接セル内に液化炭酸ガスを放出するためその消火性能を把握する必要があり、平成11年度にセル消火実証試験(I)において、液化炭酸ガスによる消火性能確認試験を実施した。その結果、セル内で取扱う可燃性物質であるポリエチレンに対しては良好な消火性能が得られたが、木片等については延焼抑制効果はあるものの完全には消火されず、内部に火種が残った深部火災が発生していることがわかった。そこで、木片等の消火をセル内で確実に行うための炭酸ガス濃度や濃度保持時間等を確認するセル消火実証試験(III)を行った。得られた成果は、以下の通りである。(1)木片や綿を詰めた試験体に着火し試験体内部の温度推移、質量減少推移、燃焼状況観察を行い、試験体内部のピーク温度は最大680$$^{circ}$$C、着火後30$$sim$$60分で著しく燃焼が進行し着火後70分位からくん焼となることがわかった。また、深部火災の発生条件を決定するために、試験体を50$$sim$$90分の時間差で着火後炭酸ガスで消火し、その消火状況を確認した結果、着火50分前後の試験体が最も消火困難であり、最も木試験の深部火災試験体に適した条件であることがわかった。(2)LEDFで発生した場合の深部火災消火に必要なセル内の炭酸ガス濃度、濃度保持時間を決定するため、セル内の炭酸ガス濃度40%, 50%, 55%, 60%, 65%で深部火災消火試験を行った。その結果、深部火災消火に必要な炭酸ガス濃度は50%以上で確実な消火を考慮すると60%以上が必要なことがわかった。また、セル内の炭酸ガス濃度の保持時間は炭酸ガス濃度50%以上であれば180分以上、60%以上であれば120分以上必要であることがわかった。

報告書

有害物選別システム設計 蛍光X線分析装置の適用確認

磯山 進; 堂野前 寧; 菊地 豊; 加藤 徳義; 宮崎 仁; 谷本 健一

JNC TN9410 2002-006, 49 Pages, 2002/07

JNC-TN9410-2002-006.pdf:1.84MB

環境保全課では、大洗工学センター内で発生する放射性固体廃棄物、および日本原子力研究所大洗研究所内の廃棄物管理施設に保管中の$$alpha$$固体廃棄物Bを、高密度に減容処理し、将来の埋設処分に対応した廃棄体として作成することを目的とした、固体廃棄物処理技術開発施設(以下「LEDF」という)の建設計画を進めている。LEDFでは、埋設時に問題となる物質等を除去するため、人手による受入廃棄物仕分けプロセスを有しているが、仕分け精度、信頼性、作業負担低減を目的に、有害物選別装置の導入を検討している。本試験では、選別装置の一つとして、蛍光X線分析装置に着目し、廃棄物模擬試験片による選別試験を行い、LEDFへの有害物選別装置としての適用性を検討した。以下に検討結果を示す。1)選別性能:単体金属であれば前処理もほとんど必要なく、ほぼ確実に選別できるが、廃棄物の表面付近のみの測定であるため、表面に塗装メッキ、不純物などがある場合は選別が困難となる。2)測定位置:廃棄物は測定部に可能な限り密着させる必要があり、隙間が 4mmを超えると材質選別が不可能となる。3)放射線影響:放射線の影響によりバックグラウンドが高い場合は、各材質の蛍光X線ピークの判別が困難になり、材質判別が出来なくなる傾向があることが判った。特にアルミニウムは蛍光X線のピークが低いため影響を受け易い。 結論として、蛍光X線分析装置は有害物選別装置としての適用性は有しているが、放射線環境下での利用は問題が多く、セル内設置は困難である。LEDFに適用するには、目視選別の補助として、セル外設置にて使用するのが合理的と思われる。

報告書

固体廃棄物処理技術開発施設(LEDF)合理化設計-セル消化実証試験(I)-

堂野前 寧; 松本 誠弘; 菊地 豊; 加藤 徳義; 宮崎 仁; 谷本 健一

JNC TN9410 2001-021, 73 Pages, 2002/01

JNC-TN9410-2001-021.pdf:3.91MB

固体廃棄物処理技術開発施設(LEDF)の合理化の一環して、セル消化設備に付属する気化器を削減する検討を行っている。本試験では、液化炭酸ガスを直接放出した場合のセル内の圧力変動や消化性能を把握するため、液化炭酸ガスによる圧力挙動確認及び消化試験を実施した。また、本方式の補完として水噴霧による水噴霧消化試験を実施した。得られた成果は、以下の通りである。1)圧力挙動確認試験では、 実験室を-40mmAqとして液化炭酸ガスを放出し、放出し、放出当初0.8mmAq/秒程度の圧力上昇が見られたが、20秒前後から0.1mmAq/秒程度の緩やかな上昇となり、120秒後には1.5mmAq/秒程度の急激な上昇が見られた。 2)液化ガス消化試験では、実験室を-40mmAqに保ち、ポリエチレン、木片+綿を燃焼させた状態で消化試験を行った。 ポリエチレンは、完全に消火できたが、木片+綿では再着火及び発煙が見られた。 一方、実験室内の圧力挙動として、放出当初1.3mmAq/秒程度の急激な上昇が10秒程度見られたが、その後状態を維持し放出後30秒後に再び1mmAq/秒程度の上昇が見られた。また、放出ノズル径を14mm2から10mm2に変更することにより放出後100$$sim$$120秒の急激な上昇が緩和された。3)水噴霧消化試験では、液化ガス消化試験と同じ条件で水噴霧での消化試験を行った結果、 木片+綿は消化できたが、ポリエチレンは消化できなかった。4)本試験より、LEDFに液化ガス方式を採用する場合は、放出ノズル径を14mm2から10mm2の小径になものに変更する等の室容積に適合する噴口面積を設定することにより、負圧を維持しつつ消化が行える見通しが得られた。 5)消化性能については、木片+綿のような内部に火種の残りやすい燃焼物はガス濃度を50%以上の高い濃度に設定する必要がある。 6)水噴霧消化は、ポリエチレンに対し消化性能が発揮されないことや消化用水が大量に発生するなど採用には多くの検討を要することが分った。

報告書

インキャン式焼却溶融炉のキャニスタ耐久性試験

菅谷 敏克; 加藤 徳義; 宮崎 仁; 谷本 健一

JNC TN9410 2001-018, 114 Pages, 2001/09

JNC-TN9410-2001-018.pdf:12.35MB

インキャン式焼却溶融炉を主要処理プロセスとする焼却溶融設備を設置した (仮称)固体廃棄物処理技術開発施設(LEDF)の建設計画を進めている。インキャン式焼却溶融炉は、セラミック製キャニスタ内で放射性廃棄物の焼却・溶融固化を行い、キャニスタごと廃棄することを特徴とする。一方、焼却量がキャニスタ容積で制限されることから、焼却量を増やす運転方法として、焼却後に残る焼却灰を溶融減容後、更に焼却を繰り返す運転が考えられる。しかし、本運転法は焼却-溶融を繰り返し行うことにより、溶融とキャニスタの接触時間が延長することでキャニスタ母材の減耗量が減少したり、キャニスタにかかる熱負荷(熱サイクル)が増え、キャニスタ母材の材料強度の低下といったキャニスタの健全性を損なうことが考えられた。そこで、本試験は、廃棄物収納容器として使用しているセラミック製キャニスタに、模擬廃棄物を投入し、焼却温度1000$$^{circ}C$$、溶融温度1500$$^{circ}C$$を繰り返し(1,3,10バッチ)負荷し、キャニスタの減耗速度、高温曲げ強度の変化を確認した。以下に結果を示す。(1)溶湯のキャニスタ母材との接触時間の延長による減耗量の増加は、今回の試験の最大減耗速度が0.09mm/hであり、従来の減耗速度1mm/hと比較しても十分少ない値であった。また、キャニスタ母材の高温曲げ強度は、平均で3Mpaであり、熱負荷をかける試験の前後で変化は見られなかった。(2)今回の試験から、焼却温度1000$$^{circ}C$$、溶融温度1500$$^{circ}C$$の繰り返しによってキャニスタの健全性を損なう要因は、キャニスタ母材の酸化を防止するために塗布されているグレーズ(ガラス製コ ーティング材)の母材からの剥がれによって、母材が酸化劣化を起こし、ぜい化により脆くなった部分が溶湯と接触することで、局部的に減耗することが要因であることが分った。(3)グレーズは、耐熱温度が1300$$^{circ}C$$程度で、溶融運転温度1500$$^{circ}C$$では耐熱温度を超えることになるため、温度変化の繰り返しによってガラスであるグレーズが溶融と固化を繰り返したことから、キャニスタ母材との熱膨張率の違いも影響し、キャニスタ内面のグレーズに剥がれが発生したと考える。 (4)グレーズが剥がれた部分のキャニスタ母材の酸化劣化量 (キャニスタ壁面から母材内部への酸化劣化の進行深さ)は、キャニスタ強度計算から算出した許容減耗量である4.

報告書

インキャン式高周波加熱を用いた焼却溶融設備の確証試験

菅谷 敏克; 堂野前 寧; 加藤 徳義; 宮崎 仁; 谷本 健一

JNC TN9410 2000-002, 149 Pages, 1999/12

JNC-TN9410-2000-002.pdf:23.51MB

建設計画を進めている固体廃棄物処理技術開発施設(LEDF)では、高線量$$alpha$$廃棄物である可燃物、PVC、ゴム、使用済イオン交換樹脂及び不燃物の処理方法として、「インキャン式高周波加熱」を用いた焼却溶融設備(セラミック製の廃棄物収納容器を高周波による誘導加熱で昇温し、容器内の廃棄物を対象物によって焼却・溶融する設備)を計画している。試験は、焼却溶融設備の設備設計の最適化を目的として、処理対象廃棄物に対する処理性能(処理能力、処理条件など)や運転条件及び処理中に発生するオフガス中の放射性核種の除去性能条件、また、焼却溶融後の生成物である溶融固化体の性状(核種、主要構成成分の均一性、固化体の強度など)の確認を行った。試験装置は、LEDFで実際に使用される規模の焼却溶融装置(パイロット装置)を用いた。また、放射性核種を使用したホット試験を要するものについては、実験室規模の機器を用いて行った。以下に、主な試験結果を要約する。(1)パイロット装置を用いて処理能力を確認した結果、可燃物・難燃物に対して6.7kg/h、樹脂に対して13.0kg/h、石膏以外の不燃物に対し30.0kg/hであった。また、このときの処理条件は幾つかのパラメータの中から選定し、運転温度については、可燃物・難燃物が1000$$^{circ}C$$、樹脂が1300$$^{circ}C$$、不燃物は1500$$^{circ}C$$、燃焼空気については、空気量は90Nmの3乗/h、空気温度は300$$^{circ}C$$、吹き込み速度は約20m/sが最適であった。(2)焼却溶融設備に必要な処理量が得られる一日の運転時間を確認した結果、可燃物、PVCやゴムなどの焼却対象廃棄物の焼却時間は5時間、焼却前後のキャニスタ昇温、残燃時間は各30分必要であった。不燃物などの溶融時間は、焼却灰の保持時間と石膏の溶融時間を考慮して5時間、キャニスタ昇温時間30分が必要であった。(3)パイロット装置により焼却溶融炉からセラミックフィルターまでの系統除染係数を確認したところ、実廃棄物の主要非揮発性核種(Co、Cs、Ce)に対し、10の5乗以上であった。(4)実験室規模の機器を用いて、高温オフガス中の揮発性ルテニウムを除去する高温Ru吸着塔の設計条件を確認した結果、粒径0.8から1.7mmの鉄担持シリカゲルに対して、滞留時間3秒以上を確保することで、除染係数10の3乗が得られるとともに、吸着材寿命は約1年であることがわかっ

報告書

固体廃棄物処理技術開発施設(LEDF)の設計概要(平成10年度第7回R&D報告会資料)

加藤 徳義

JNC TN9200 99-004, 16 Pages, 1998/12

JNC-TN9200-99-004.pdf:1.99MB

固体廃棄物処理技術開発施設(LEDF)は、平成8年度に詳細設計を終了した。平成9年度は、アスファルト固化処理施設の火災爆発事故等の情勢を踏まえ、今までに実施したLEDFの安全設計に、これらの事故の教訓を反映し安全設計の見直しを行った。本報告は、平成10年度第7回R&D報告会で発表した、LEDFの設計概要の原稿を取りまとめたものである。

7 件中 1件目~7件目を表示
  • 1