Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 172

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2019

Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Hanamuro, Takahiro; Shimada, Akiomi; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; et al.

JAEA-Research 2020-011, 67 Pages, 2020/10

JAEA-Research-2020-011.pdf:3.87MB

This annual report documents the progress of research and development (R&D) in the 5th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2020)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Koji; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; Komatsu, Tetsuya; Yokoyama, Tatsunori; et al.

JAEA-Review 2020-010, 46 Pages, 2020/07

JAEA-Review-2020-010.pdf:1.89MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2020. The objectives and contents in fiscal year 2020 are described in detail based on the JAEA 3rd Medium- and Long-term Plan (fiscal years 2015-2021). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2018

Ishimaru, Tsuneari; Ogata, Nobuhisa; Hanamuro, Takahiro; Shimada, Akiomi; Kokubu, Yoko; Asamori, Koichi; Niwa, Masakazu; Shimada, Koji; Watanabe, Takahiro; Saiga, Atsushi; et al.

JAEA-Research 2019-006, 66 Pages, 2019/11

JAEA-Research-2019-006.pdf:4.39MB

This annual report documents the progress of research and development (R&D) in the 4th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this report, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2019)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Hanamuro, Takahiro; Shimada, Akiomi; Kokubu, Yoko; Asamori, Koichi; Niwa, Masakazu; Shimada, Koji; Watanabe, Takahiro; Sueoka, Shigeru; et al.

JAEA-Review 2019-010, 46 Pages, 2019/09

JAEA-Review-2019-010.pdf:2.45MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency, in fiscal year 2019. The objectives and contents in fiscal year 2019 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2017

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Akiomi; Asamori, Koichi; Kokubu, Yoko; Niwa, Masakazu; Watanabe, Takahiro; Saiga, Atsushi; Sueoka, Shigeru; Komatsu, Tetsuya; et al.

JAEA-Research 2018-015, 89 Pages, 2019/03

JAEA-Research-2018-015.pdf:14.43MB

This annual report documents the progress of research and development (R&D) in the 3rd fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this report, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific Program for fiscal year 2018)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Akiomi; Asamori, Koichi; Kokubu, Yoko; Niwa, Masakazu; Watanabe, Takahiro; Saiga, Atsushi; Sueoka, Shigeru; Komatsu, Tetsuya; et al.

JAEA-Review 2018-020, 46 Pages, 2019/01

JAEA-Review-2018-020.pdf:1.25MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency, in fiscal year 2018. The objectives and contents in fiscal year 2018 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2016

Ishimaru, Tsuneari; Yasue, Kenichi*; Asamori, Koichi; Kokubu, Yoko; Niwa, Masakazu; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Saiga, Atsushi; Shimizu, Mayuko; et al.

JAEA-Research 2018-008, 83 Pages, 2018/12

JAEA-Research-2018-008.pdf:11.43MB

This annual report documents the progress of research and development (R&D) in the 2nd fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2017)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Akiomi; Kokubu, Yoko; Asamori, Koichi; Niwa, Masakazu; Watanabe, Takahiro; Saiga, Atsushi; Sueoka, Shigeru; Yokoyama, Tatsunori; et al.

JAEA-Review 2017-022, 45 Pages, 2017/12

JAEA-Review-2017-022.pdf:1.42MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency, in fiscal year 2017. The objectives and contents in fiscal year 2017 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2015

Ishimaru, Tsuneari; Umeda, Koji*; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; et al.

JAEA-Research 2016-023, 91 Pages, 2017/02

JAEA-Research-2016-023.pdf:13.33MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2016)

Ishimaru, Tsuneari; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; Hama, Yuki

JAEA-Review 2016-016, 44 Pages, 2016/08

JAEA-Review-2016-016.pdf:2.28MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in JAEA, in fiscal year 2016. The objectives and contents in fiscal year 2016 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Synthesized research report in the second mid-term research phase, Mizunami Underground Research Laboratory Project, Horonobe Underground Research Laboratory Project and Geo-stability Project (Translated document)

Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Fujita, Tomo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; et al.

JAEA-Review 2016-014, 274 Pages, 2016/08

JAEA-Review-2016-014.pdf:44.45MB

We synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second midterm research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase).

Journal Articles

Contributions of geosciences to nuclear safety, 1; Detecting geofluids and its implications for geological disposal

Umeda, Koji; Asamori, Koichi

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 58(2), p.110 - 114, 2016/02

Geofluid is regarded as a powerful tool to evaluate geosphere stability for geological disposal.

Journal Articles

Teleseismic shear wave tomography of the Japan subduction zone

Asamori, Koichi; Zhao, D.*

Geophysical Journal International, 203(3), p.1752 - 1772, 2015/12

 Times Cited Count:24 Percentile:75.01(Geochemistry & Geophysics)

We present the first high-resolution S-wave tomography of the Japan subduction zone down to a depth of 700 km, which is determined by inverting a large number of high-quality S-wave arrival-time data from local, regional and teleseismic events. The subducting Pacific and Philippine Sea (PHS) slabs are revealed clearly as high-velocity (high-V) zones, whereas low-velocity (low-V) anomalies are revealed in the mantle wedge above the two slabs. The PHS slab has subducted aseismically down to a depth of 480 km under the Japan Sea and to a depth of 540 km under the Tsushima Strait. A window is revealed within the aseismic PHS slab, being consistent with P-wave tomography. Prominent low-V anomalies exist below the PHS slab and above the Pacific slab, which reflect hot and wet mantle upwelling caused by the joint effect of deep dehydration of the Pacific slab and convective circulation process in the mantle wedge above the Pacific slab. The hot and wet mantle upwelling has caused the complex geometry and structure of the PHS slab in SW Japan, and contributed to the Quaternary volcanism along the Japan Sea coast. In eastern Japan, low-V zones are revealed at depths of 200-700 km below the Pacific slab, which may reflect hot upwelling from the lower mantle or even the core-mantle boundary.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2015)

Umeda, Koji; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Fujita, Natsuko; Shimizu, Mayuko; Matsubara, Akihiro; Tamura, Hajimu; Yokoyama, Tatsunori; et al.

JAEA-Review 2015-019, 42 Pages, 2015/09

JAEA-Review-2015-019.pdf:4.64MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in JAEA, in fiscal year 2015. The objectives and contents in fiscal year 2015 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Research on geosphere stability for long-term isolation of radioactive waste; Scientific programme for fiscal years 2015-2021

Umeda, Koji; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Fujita, Natsuko; Shimizu, Mayuko; Shimada, Akiomi; Matsubara, Akihiro; Tamura, Hajimu; et al.

JAEA-Review 2015-012, 43 Pages, 2015/08

JAEA-Review-2015-012.pdf:1.24MB

The concept of geological disposal of high-level radioactive waste (HLW) in Japan is based on a multibarrier system which combines a stable geological environment with an engineered barrier system. Potential geological host formations and their surroundings are chosen, in particular, for their long-term stability, taking into account the fact that Japan is located in tectonically active zone. This report is to outline 7 years plan (fiscal years 2015-2021) of research and development (R&D) for geosphere stability for long-term isolation of the HLW in JAEA. Background of this research is clarified with the necessity and the significance, and the past progress in this report. The objectives, outline, contents and schedule during the next 7 years are described in detail. In addition, the plan framework is structured into the following categories: (1) Development and Systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Synthesized research report in the second mid-term research phase; Mizunami Underground Research Laboratory Project, Horonobe Underground Research Laboratory Project and Geo-stability Project

Hama, Katsuhiro; Mizuno, Takashi; Sasao, Eiji; Iwatsuki, Teruki; Saegusa, Hiromitsu; Sato, Toshinori; Fujita, Tomo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Yokota, Hideharu; et al.

JAEA-Research 2015-007, 269 Pages, 2015/08

JAEA-Research-2015-007.pdf:68.65MB
JAEA-Research-2015-007(errata).pdf:0.07MB

We have synthesised the research results from Mizunami/Horonobe URLs and geo-stability projects in the second mid-term research phase. It could be used as technical bases for NUMO/Regulator in each decision point from sitting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High quality construction techniques and field investigation methods have been developed and implemented and these will be directly applicable to the National Disposal Program (along with general assessments of hazardous natural events and processes). It will be crucial to acquire technical knowledge on decisions of partial backfilling and final closure by actual field experiments in Mizunami/Horonobe URLs as main themes for the next phases.

Journal Articles

Triggering of earthquake swarms following the 2011 Tohoku megathrust earthquake

Umeda, Koji; Asamori, Koichi; Makuuchi, Ayumu; Kobori, Kazuo; Hama, Yuki*

Journal of Geophysical Research; Solid Earth, 120(4), p.2279 - 2291, 2015/04

 Times Cited Count:2 Percentile:10.86(Geochemistry & Geophysics)

Following the Mw 9.0 Tohoku-Oki earthquake, an unusual, shallow normal-faulting swarm sequence occurred near the Pacific coast in the southeast Tohoku district. The observed $$^{3}$$He/$$^{4}$$He ratios are significantly lower than the atmospheric value, indicating mantle helium contributed less than 10%. The plausible source of fluids can be attributed to waters released owing to sediment porosity collapse, and smectite-illite and opal-quartz reactions in the subducting sediments, rather than dehydration reactions of the subducting altered basalts and/or hydrated mantle. The aqueous fluids driven off the subducting slab migrate into the fore-arc crust, because of the pressure gradient between lithostatic pore pressure along the plate interface and hydrostatic pore pressure in the overriding crust. The swarm earthquake sequence would have been triggered by stress change associated with the Tohoku-Oki earthquake, enhanced by fluid flow along inherited weakened zones in the crust.

Journal Articles

Three-dimensional magnetotelluric imaging of crustal fluids and seismicity around Naruko Volcano, NE Japan

Ogawa, Yasuo*; Ichiki, Masahiro*; Kanda, Wataru*; Mishina, Masaaki*; Asamori, Koichi

Earth, Planets and Space (Internet), 66(1), p.158_1 - 158_13, 2014/12

 Times Cited Count:38 Percentile:82.23(Geosciences, Multidisciplinary)

We have analyzed three-dimensional resistivity structure around Naruko volcano, NE Japan. From the inversion of full tensor components, the following model features are found. Sub-vertical conductors exist at Naruko volcanoes below a depth of few kilometers. The conductor reaches to the surface of Naruko volcano and deepens southward away from the volcano along the backbone ranges. High seismicity in the upper crust is observed above and around the conductors. This implies that the seismicity is fluid-driven and also that the fluid trap is created by the precipitation of quartz due to loss of solubility at shallow depth.

Journal Articles

Earthquake doublet in an active shear zone, southwest Japan; Constraints from geophysical and geochemical findings

Umeda, Koji; Asamori, Koichi; Makuuchi, Ayumu; Kobori, Kazuo

Tectonophysics, 634, p.116 - 126, 2014/11

 Times Cited Count:2 Percentile:9.68(Geochemistry & Geophysics)

The geophysical and geochemical observations are significant indications that the invasion of mantle fluids into the crust, driven by upwelling asthenosphere from the Okinawa trough, triggers the notable left-lateral shearing in the zone in the present-day subduction system. In addition, the existence of aqueous fluids in and below the seismogenic layer could change the strength of the zones, and alter the local stress regime, resulting in the occurrence of the 1997 earthquake doublet.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2014)

Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Kokubu, Yoko; Kobori, Kazuo; Makuuchi, Ayumu; Matsubara, Akihiro; Shibata, Kenji; Tamura, Hajimu; Tanabe, Hiroaki; et al.

JAEA-Review 2014-033, 43 Pages, 2014/09

JAEA-Review-2014-033.pdf:16.91MB

The concept of geological disposal of HLW in Japan is based on a multi-barrier system which combines a stable geological environment with a robust barrier system. Potential geological host formations and their surroundings are chosen, in particular, for their long-term stability, taking into account the fact that Japan is located in a tectonically active zone. This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of HLW in JAEA, in fiscal year 2014. The objectives and contents in fiscal year 2014 are described in detail based on the outline of 5 years plan (fiscal years 2010-2014). In addition, the planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

172 (Records 1-20 displayed on this page)