Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
宮川 鈴衣奈*; 上林 大介*; 中村 浩隆*; 橋田 昌樹*; Zen, H.*; 染川 智弘*; 松岡 健史*; 小倉 広之*; 寒河江 大輔*; 瀬戸 雄介*; et al.
Scientific Reports (Internet), 12, p.20955_1 - 20955_8, 2022/12
被引用回数:1 パーセンタイル:10.22(Multidisciplinary Sciences)大型放射光施設(SPring-8)にて原子力研究機構が有するビームラインBL22XUの応力イメージング装置を用いて、レーザー誘起周期構造(Laser-Induced Periodic Surface Structure: LIPSS)の結晶評価を行った。測定対象のLIPSSは、Ti:Sapphireレーザー(波長800nm)とMIR-FEL(中赤外自由電子レーザー:波長11.4m)の2種の近・中赤外フェムト秒レーザーを用い、Si基板上に形成された。これらのレーザーは波長の違いの他、レーザーパルスの構造に違いがあり、その違いが形成されるLIPSSの構造に与える影響があることが分かった。放射光XRDにより、Ti:Sapphireレーザーによって形成されたLIPSSは、転位などの欠陥は発生せずに結晶性を維持するものの残留歪が存在することが判明した。一方、MIR-FELによって形成されたLIPSSは、残留歪はないものの転位などの欠陥が発生していることが分かった。これらの結果から、LIPSSを形成する光源レーザーの選択により、結晶状態の異なるLIPSSが得られることが分かった。これらの情報は、今後のLIPSSの機能的応用に向けた取り組みにおいて、有用な情報となりうる。
大島 武; 小野田 忍; 鎌田 透*; 堀田 和利*; 河田 研治*; 江龍 修*
Materials Science Forum, 615-617, p.781 - 784, 2009/00
炭化ケイ素(SiC)デバイスに最適な基板研磨技術の探索研究の一環として、表面状態の異なる六方晶(4H)SiC上に金属-酸化膜-半導体電界効果トランジスタ(MOSFET)を作製し、電気特性と表面状態の関係を調べた。3又は1/4粒径ダイヤモンドによる機械研磨(MP),化学機械研磨(CMP)により異なる表面状態を作製した。サブシュレッショールド領域のドレイン電流の漏れを評価したところCMPのものは10Aオーダーであるのに対しMPのものは表面平坦度の低下とともに漏れ電流が大きくなることが判明した。また、表面平坦度の低下とともにゲート酸化膜の耐圧が低下すること、しきい値電圧が増加することも併せて見いだされた。酸化膜耐圧は結晶表面欠陥に敏感であること、しきい値電圧は深い界面準位に影響されることから、表面平坦度の低下は結晶欠陥や界面準位の原因となることが推測され、高品質デバイス作製には表面平坦度の高い結晶が必要であると帰結できた。
大島 武; 上殿 明良*; 江龍 修*; Lee, K. K.; 安部 功二*; 伊藤 久義; 中嶋 賢志郎*
Materials Science Forum, 433-436, p.633 - 636, 2003/08
6方晶炭化ケイ素(6H-SiC)へボロンの注入を行い、注入後熱処理による結晶性の回復とボロンの拡散の関係を調べた。結晶性に関しては陽電子消滅法を用い空孔型欠陥を、ボロン拡散については二次イオン質量分析法(SIMS)を用いて調べた。その結果、800から1000の熱処理により空孔型欠陥がクラスター化すること、1100以上の熱処理により空孔クラスターのサイズの減少が生じること、1500以上の熱処理で空孔型欠陥は観測限界以下になり結晶性が回復することが分かった。一方、ボロン拡散に関しては、1300以下では観測されず、1400以上の熱処理で、表面拡散が観測された。このことより、ボロン拡散は空孔型欠陥の拡散や移動とは直接関係ないことが見い出された。陽電子消滅の詳細な解析を行ったところ、1500で空孔型欠陥は観測されないが、陽電子の拡散長は未注入試料に比べ短いことが分かった。この結果は、空孔型欠陥はないものの、格子間元素等の散乱体が依然存在することを意味する。このことより、ボロン拡散は、格子間元素とボロンの交換によるkick-out機構で発生することが示唆される。
大島 武; 上殿 明良*; 阿部 浩之; Chen, Z. Q.*; 伊藤 久義; 吉川 正人; 安部 功二*; 江龍 修*; 中嶋 賢志郎*
Physica B; Condensed Matter, 308-310, p.652 - 655, 2001/12
被引用回数:6 パーセンタイル:36.77(Physics, Condensed Matter)六方晶シリコンカーバイド(6H-SiC)へアルミニウム(Al)及び炭素(C)の共注入を行い、注入後及び熱処理後に残留する空孔型欠陥を陽電子消滅法により調べた。Al注入(濃度:2E18/cm3)は室温で、炭素注入(濃度:1E18/cm3)は室温または800で行った。その結果、両試料ともに注入後に残留する空孔型欠陥は主に複空孔(VsiVc)であること,1000での熱処理により表面層の空孔欠陥はクラスター化するが、深部の欠陥はクラスター化が抑制されること,さらに1000以上の熱処理では空孔欠陥サイズは減少し、1400熱処理により結晶性が回復することがわかった。また、Al単独注入試料中の空孔欠陥においても同様な振る舞いが観測され、共注入による欠陥の特異な振る舞いは見出されなかった。一方、電気特性の結果、共注入試料の電子濃度の方がAl単独注入より高く、共注入の効果が見られた。上記より、共注入ではサイトコンペティション効果によりAlの活性化率が向上するというわれわれのモデルの妥当性が裏づけられた。
大島 武; 小野田 忍; 堀田 和利*; 鎌田 透*; 河田 研治*; 江龍 修*
no journal, ,
炭化ケイ素(SiC)基板の表面状態がデバイス特性に与える影響を調べるために、異なる表面平坦度を有する六方晶(4H)SiCエピ基板上に作製した金属-酸化膜-半導体電界効果トランジスタ(MOSFET)の電気特性の差異を調べた。異なる径のダイヤモンドスラリーによる機械研磨で二種類(3MP, 1.4MP)と、コロイダルシリカによる化学機械研磨により仕上げを行った基板(CMP2)、さらに、比較のため市販のCMP仕上げ基板(CMP1)の4種類の異なる表面状態を有する4H-SiC基板を用意した。原子間力顕微鏡(AFM)により基板表面を観察し、表面粗さ(Rms)を調べたところ、3MP, 1/4MP, CMP1及びCMP2は、それぞれ、6.83, 1.43, 0.070及び0.077nmであった。次に、これらの基板上に化学気相成長(CVD)法によりp型エピ膜を堆積した。エピ膜成長後の表面のRmsは、3MP, 1/4MP, CMP1及びCMP2で、それぞれ8.47, 0.906, 0.296及び0.260nmであった。これらのエピ基板上にMOSFETを作製し、電気特性を評価した結果、Rmsが大きな試料ほど酸化膜のリーク電流が大きく、絶縁破壊の耐電圧も低いことが判明した。以上より、基板表面状態はMOSFET特性に影響し、平坦度の良い基板を作製することが高い特性を示すMOSFETの作製に必要であると帰結できた。
大島 武; 小野田 忍; 堀田 和利*; 鎌田 透*; 河田 研治*; 江龍 修*
no journal, ,
炭化ケイ素(SiC)デバイス作製プロセスの最適化を目的に、デバイス作製プロセスの出発点といえる基板研磨技術がデバイス特性に与える影響に着目し、異なる表面粗さを持つ六方晶(4H)SiC基板上に作製したMOSFETの電気特性について調べた。2インチ4H-SiC基板を用い、3mのダイヤモンドスラリーにより機械研磨(3MP)、さらに1/4mで機械研磨(1/4MP),コロイダルシリカによる化学機械研磨を行った試料(CMP)を作製した。原子間力顕微鏡(AFM)観察により、3MP, 1/4MP, CMPのRmsを求めたところ、それぞれ、6.83, 1.43及び0.077nmであった。次に、化学気相成長法を用いて同一条件でp型エピ膜を堆積したところ、エピ膜成長後の表面のRmsは、3MP, 1/4MP及びCMPで、それぞれ8.47, 0.906及び0.260nmであった。これらエピ基板1/4部分に150個程度のMOSFETを同一条件で作製し、しきい値電圧(V)を測定した。Vの理想値は2.8Vであり、いずれのMOSFETも理想値より大きい値であったが、表面平坦度がよくなるに従い6.73Vから5.19Vと理想値に近づく結果となった。また、分布は3MPでは0.77Vであるが、CMPでは0.51Vと表面平坦度がよくなるに従い分布幅も小さくなった。以上より、基板の表面平坦度の向上はMOSFET特性の向上につながることが判明した。
田中 弥生*; 堀田 和利*; 鎌田 透*; 河田 研治*; 大島 武; 江龍 修*
no journal, ,
炭化ケイ素(SiC)基板を形状加工しながら最表面まで単結晶状態とし、かつ、均質な原子ステップで構成される面を形成し、ショットキーダイオード(SBD)によりその特性を評価した。部分的に耐圧が低い箇所が見いだされたが、それが基板起因であるのか、形状加工過程にあるのかを調べるため、ラッピング工程における基板のSBD特性を調べた。特にダイヤモンド加工工程で生じるスクラッチが基板潜傷となり、リーク原因となる可能性に着目し実験を行った。半絶縁性六方晶(4H)SiC表面を粒径3mとそれに続く1/4mのダイヤモンドスラリーで加工し、その面上に直径4mmのショットキー電極を作製し、耐圧評価を行った。SBDの逆方向特性を測定した結果、1/4mダイヤモンド仕上げ面は以前調べた化学機械研磨(CMP)仕上げ面に比べて一桁多いリーク電流が観測されたが、1.2KVの範囲ではブレークしないことが明らかとなった。しかし、3mダイヤモンド仕上げ面では、大きくリークした箇所が観測された。このことより、表面に残存する深いスクラッチがSBDのブレーク起因となる可能性があり、かつ、CMP面と比較することにより、1/4m研磨での浅いスクラッチであってもリーク電流を増大させることが判明した。
堀田 和利*; 鎌田 透*; 河田 研治*; 江龍 修*; 大島 武
no journal, ,
市販されている炭化ケイ素(SiC)基板は、デバイスを作製する(0001)Si面がメカノケミカルポリシング(CMP)面、裏面の(000-1)C面がメカニカルポリシング(MP)面となっている。この表裏の加工状態の差は、基板表面に応力差を生じさせ、基板形状を悪化させる原因となる。今後のSiC基板大口径化や量産化においては、基板形状の高精度化は必須となると考えられ、基板表裏をCMP面とする必要があるが、現在は(0001)Si面及び(000-1)C面の性質の違いから、片面ごとにCMPすることしかできず、加工に長時間を必要とする問題がある。そこで本研究では、加工時間の短縮並びに基板形状の高精度化を目的に、(0001)Si面及び(000-1)C面を同時にCMPできる技術の開発を試みた。実験には両面研磨機(浜井産業製6BN)を用い、加工圧及び定盤回転数を346g/cm及び40rpmとした。研磨後、表面粗さを原子間力顕微鏡にて評価したところ、表面にスクラッチやピットがないことが観察され、表面粗さRaは0.1nm以下であり、良好な平坦度を有する面であることが確認された。
堀田 和利*; 鎌田 透*; 河田 研治*; 江龍 修*; 大島 武
no journal, ,
炭化ケイ素(SiC)基板の表面加工状態がエピタキシャル成長後の結晶表面に及ぼす影響を明らかにするため、加工状態の異なる2インチn型4H-SiC基板を作製し、これらの基板上にp型の4H-SiCエピタキシャル膜を化学気相法(CVD)により成長させた。エピタキシャル膜成長前後の表面状態を原子間力顕微鏡(AFM)と微分干渉顕微鏡を用いて評価したところ、エピタキシャル膜の表面に基板の加工欠陥が原因で発生したと考えられるキャロット等の特有の欠陥が観察されることが明らかとなった。以上の結果より、エピタキシャル成長前の加工状態はエピタキシャル膜成長後も引き継がれ、加工キズ等はエピタキシャル膜の品質に強い影響を与えると結論できた。