Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kinase, Akari; Goto, Katsunori*; Aono, Ryuji; Konda, Miki; Sato, Yoshiyuki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2024-004, 60 Pages, 2024/07
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2 and JRR-3 and stored at the waste storage facility L. In this report, we summarized the radioactivity concentrations of 20 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Pu, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2022.
Aono, Ryuji; Haraga, Tomoko; Kameo, Yutaka
JAEA-Technology 2024-006, 48 Pages, 2024/06
In the future, radioactive waste which generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. It is necessary to establish the method to evaluate the radioactivity concentrations of the radioactive wastes. In this work, we studied the evaluation methodology of the radioactivity concentrations in concrete waste generated from JPDR. In order to construct the evaluation methodology of the radioactivity concentration, the validity of the evaluation methods was confirmed by mainly theoretical calculation and using the result of radiochemical analysis. Correcting the theoretical calculations using results of nuclide analysis, it is possible to evaluate the radioactivity concentrations of nuclides preliminary selected.
Ouchi, Kazuki; Haraga, Tomoko; Hirose, Kazuki*; Kurosawa, Yuika*; Sato, Yoshiyuki; Shibukawa, Masami*; Saito, Shingo*
Analytica Chimica Acta, 1298, p.342399_1 - 342399_7, 2024/04
Times Cited Count:0 Percentile:0.00(Chemistry, Analytical)Given that conventional methods of high-dose sample analysis pose substantial exposure risks and generate large amounts of secondary radioactive waste, faster procedures allowing for decreased radiation emission are highly desirable. To address this need, we developed a Sr quantitation technique that is based on liquid scintillation counting-coupled capillary transient isotachophoresis (ctITP) with two-point detection and relies on the rapid concentration, separation, and fractionation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-complexed Sr in a single run. This method, which allows for the handling of high-dose radioactive specimens at the microliter level and is substantially faster than conventional ion-exchange protocols, was used to selectively quantify Sr in real high-dose waste. The successful concentration-separation in ctITP was ascribed to the inertness of the Sr-DOTA complex to dissociation.
Tobita, Minoru*; Goto, Katsunori*; Omori, Takeshi*; Osone, Osamu*; Haraga, Tomoko; Aono, Ryuji; Konda, Miki; Tsuchida, Daiki; Mitsukai, Akina; Ishimori, Kenichiro
JAEA-Data/Code 2023-011, 32 Pages, 2023/11
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to the study of radioactivity concentration evaluation methods for radioactive wastes generated from nuclear research facilities, we collected and analyzed concrete samples generated from JRR-3, JRR-4 and JAERI Reprocessing Test Facility. In this report, we summarized the radioactivity concentrations of 23 radionuclides (H, C, Cl, Ca, Co, Ni, Sr, Nb, Ag, Cs, Ba, Eu, Eu, Ho, U, U, U, Pu, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2021-2022.
Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; Konda, Miki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2023-002, 81 Pages, 2023/05
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 20 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Pu, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2020.
Saito, Shingo*; Haraga, Tomoko; Marumo, Kazuki*; Sato, Yoshiyuki; Nakano, Yuta*; Tasaki-Handa, Yuiko*; Shibukawa, Masami*
Bulletin of the Chemical Society of Japan, 96(3), p.223 - 225, 2023/03
Times Cited Count:3 Percentile:52.35(Chemistry, Multidisciplinary)Highly efficient and effective separation between americium (Am) and curium ion (Cm) was achieved by two simple electrophoresis-based techniques. Am and Cm ions were complexed with fluorophore-modified acyclic hexadentate and octadentate polyaminocarboxylates and then were electrophoretically separated and fluorescently detected in free solution with ternary complexation or in gel medium.
Yamagata, Kazuhito*; Ouchi, Kazuki; Marumo, Kazuki*; Tasaki-Handa, Yuiko*; Haraga, Tomoko; Saito, Shingo*
Inorganic Chemistry, 62(2), p.730 - 738, 2023/01
Times Cited Count:3 Percentile:61.82(Chemistry, Inorganic & Nuclear)The inert NpO complex with a fluorescein-modified phenanthroline-2,9-dicarboxylic acid was found by kinetic selection using polyacrylamide gel electrophoresis (PAGE) from a small chemical library. The small spontaneous dissociation rate constant of 810 s (the half-life of 23 hours) was determined. This is the singly-charged NpO complex exhibiting unusual kinetic inertness in aqueous solution, one million times slower than widely accepted fast kinetics of neptunyl complexes. Selective fluorescence detection of NpO was achieved in PAGE with a detection limit of 68 pmol dm(17 fg). This system was successfully applied to simulated spent nuclear fuel and high-level radioactive waste samples.
Tobita, Minoru*; Konda, Miki; Omori, Takeshi*; Nabatame, Tsutomu*; Onizawa, Takashi*; Kurosawa, Katsuaki*; Haraga, Tomoko; Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; et al.
JAEA-Data/Code 2022-007, 40 Pages, 2022/11
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete, ash, ceramic and brick samples generated from JRR-3, JRR4 and JRTF facilities. In this report, we summarized the radioactivity concentrations of 24 radionuclides (H, C, Cl, Ca, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Ba, Eu, Eu, Ho, U, U, Pu, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2020-2021.
Tsuchida, Daiki; Mitsukai, Akina; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2022-004, 87 Pages, 2022/07
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until by the beginning of disposal. In order to contribute to this work, we collected and analyzed samples generated from JPDR, JRR-3 and JRR-4. In this report, radioactivity concentrations of 20 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Am, Cm) were determined based on radiochemical analysis and summarized as basic data for the study of evaluation method of radioactive concentration.
Tobita, Minoru*; Haraga, Tomoko; Endo, Tsubasa*; Omori, Hiroyuki*; Mitsukai, Akina; Aono, Ryuji; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2021-013, 30 Pages, 2021/12
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JPDR facility. In this report, we summarized the radioactivity concentrations of 21 radionuclides (H, C, Cl, Ca, Co, Ni, Sr, Nb, Ag, Cs, Eu, Eu, Ho, U, U, Pu, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2018-2019.
Haraga, Tomoko; Saito, Shingo*
Bunseki Kagaku, 70(12), p.671 - 679, 2021/12
We developed highly sensitive capillary electrophoresis-laser-induced fluorescence detection methods for lanthanide (Ln) and actinide (An) ions with small sample volume and low emission of waste, by which the radiation risk can be minimized. Specifically, determination of Nd ion in spent nuclear fuel, effective separation between Am and Cm ion, and specific detection of UO in real radioactive samples were achieved by molecular design of fluorescence probes composed of an aminocarboxylate chelating moiety, a fluorophore and a spacer, and unique separation mode based on dynamic ternary complexation. We found that there are appropriate combination of probe and ternary complexation for detection and separation of each Ln and An ions. For example, acyclic and macrocyclic hexadentate is suitable for Ln, Am and Cm, and planer tetradentate with electron system is specific for UO, with ppt-sub ppt level detection.
Nakano, Sumika*; Marumo, Kazuki*; Kazami, Rintaro*; Saito, Takumi*; Haraga, Tomoko; Tasaki-Handa, Yuiko*; Saito, Shingo*
Environmental Science & Technology, 55(22), p.15172 - 15180, 2021/11
Times Cited Count:5 Percentile:27.35(Engineering, Environmental)Humic acid (HA) can strongly complex with metal ions to form a supramolecular assembly via coordination binding. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecule and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu and Tb ions using a unique polyacrylamide gel electrophoresis (PAGE) for the separation and quantification of HA complexes and metal ions bound, followed by UV-Vis spectroscopy and EEM-PARAFAC. It was found that the supramolecular behaviors of Cu and Tb complexes with HA collected from peat and deep groundwater (HHA) differed. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our results provide new insights into HA supramolecules formed via metal complexation.
Tsuchida, Daiki; Haraga, Tomoko; Tobita, Minoru*; Omori, Hiroyuki*; Omori, Takeshi*; Murakami, Hideaki*; Mitsukai, Akina; Aono, Ryuji; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2020-022, 34 Pages, 2021/03
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JRR-3 and JPDR. In this report, we summarized the radioactivity concentrations of 22 radionuclides(H, C, Cl, Ca, Co, Ni, Sr, Nb, Ag, Ba, Cs, Eu, Eu, Ho, U, U, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples.
Aono, Ryuji; Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2020-006, 70 Pages, 2020/08
Radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried at the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JPDR and JRR-4. In this report, we summarized the radioactivity concentrations of 19 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Am, Cm) which were obtained from radiochemical analysis of those samples.
Haraga, Tomoko; Tsujimura, Hiroto*; Miyauchi, Saori*; Kamimura, Takuya*; Shibukawa, Masami*; Saito, Shingo*
Electrophoresis, 41(13-14), p.1152 - 1159, 2020/07
Times Cited Count:7 Percentile:45.12(Biochemical Research Methods)A novel combination of CE-based separation techniques was used for the precise fractionation of ionic compounds from impurities. The combination of on-capillary concentration and separation using transient isotachophoresis, with multiple injections and a two-point detection system provided higher efficiency, and accuracy at a microliter-scale injection volume, than when CE was individually used for purification. In this paper, we present successful applications of the CE fractionation techniques for the purification of fluorescein, fluorescein-4-isothiocyanate, two fluorescent metal ion probes, and a fluorescein-modified DNA aptamer. The purity of the isolated fluorescent probes ranged from 95 to 99%. The purified probe solutions were practical for use as purified stock solutions. The method developed was useful for the purification of anionic fluorescent reagents to be of ultratrace analytical grade for use with CE-LIF.
Oshima, Masumi*; Goto, Jun*; Haraga, Tomoko; Kin, Tadahiro*; Ikebe, Yurie*; Seto, Hirofumi*; Bamba, Shigeru*; Shinohara, Hirofumi*; Morimoto, Takao*; Isogai, Keisuke*
Journal of Nuclear Science and Technology, 57(6), p.663 - 670, 2020/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Gamma-gamma coincidence measurement utilized in -ray spectroscopy experiments is well known to be effective for the improvement of signal-to-noise ratio in a -ray spectrum. We study its applicability to determination of long-lived radioactive nuclides in environmental samples. The -ray simulation code Geant 4.10.2 was used. We took up 35 nuclides which need to be determined for the evaluation of fission product leakage at the nuclear accident in the Fukushima nuclear power plants. Among them five nuclides of Co, Nb, Cs, Eu and Eu can be the objectives of the multiple -ray detection method. The simulation results indicate that the signal-to-noise ratio can be improved by a factor between 9.8 and 283, and the detection limit by a factor between 2.7 and 8.5 relative to the singles measurement, implying that the method can be well applied to the determination of the long-lived radioactive nuclides.
Tobita, Minoru*; Haraga, Tomoko; Sasaki, Takayuki*; Seki, Kotaro*; Omori, Hiroyuki*; Kochiyama, Mami; Shimomura, Yusuke; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2019-016, 72 Pages, 2020/02
In the future, radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 25 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Mo, Tc, Ag, Sn, I, Cs, Eu, Eu, U, U, U, Pu, Pu, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of those samples.
Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2019-012, 70 Pages, 2020/02
It is necessary to establish practical evaluation methods to determine radioactivity concentration of radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from Post Irradiation Examination Facility. In this report, we summarized the radioactivity concentrations of 19 radionuclides which were obtained from radiochemical analysis of those samples.
Sato, Yoshiyuki; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Testing 2019-003, 20 Pages, 2019/12
In the Radioactive Waste Management Technology Section, the radioactive liquid waste generated in the test using natural uranium in the past has been stored based on the contents of permission. Although we decided to perform solidification treatment in order to reduce the risk in storage, no rational treatment method has been established so far. Therefore, we examined adsorption treatment of natural uranium using uranium adsorbent (Tannix), and finally stabilized treatment by cement solidification. The treatment methods and findings obtained for a series of operations in waste liquid treatment are summarized in this report for reference when treating similar liquid waste.
Marumo, Kazuki*; Matsumoto, Atsumasa*; Nakano, Sumika*; Shibukawa, Masami*; Saito, Takumi*; Haraga, Tomoko; Saito, Shingo*
Environmental Science & Technology, 53(24), p.14507 - 14515, 2019/12
Times Cited Count:7 Percentile:25.80(Engineering, Environmental)Humic acids (HA) are responsible for the fate of metal ions in the environment. We developed a polyacrylamide gel electrophoresis (PAGE) technique to investigate the MW distributions of metal ion (copper ion). Combining contaminant-metal-free and high-resolution PAGE systems for HA provided accurate MW distributions for the metal ions. Coupling this system with UV-Vis spectrometry and the excitation-emission matrix (EEM) spectrometry-parallel factor analysis (PARAFAC) method revealed new insights into metal-HA complex. Interestingly, the MW distributions of the three metal ions were entirely different, indicating that the presence of specific binding environments in HA for the metal ions depending its MW. The MW distributions of five fluorescent components were associated with the metal ion distributions. Our PAGE-based methodology suggests that metal binding sites and fluorescent components in HA exhibit heterogeneity in terms of metal binding affinity and MW.