Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
岡本 芳浩; 塩飽 秀啓; 嶋村 圭介*; 小林 秀和; 永井 崇之; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*
Journal of Nuclear Materials, 570, p.153962_1 - 153962_13, 2022/11
モリブデンの溶解度を高める効果があるリンを含む模擬核廃棄物ガラス試料を作製し、放射光X線吸収微細構造(XAFS)分析によりいくつかの構成元素を、ラマン分光分析によりその配位構造を分析した。分析では、リンの添加量や廃棄物積載率の違いによる局所構造および化学状態の変化を系統的に調べた。その結果、最大廃棄物量30wt%(MoO 1.87mol%に相当)においても、モリブデン酸塩化合物による結晶相は観察されなかった。廃棄物充填率を上げると酸化が進行し、リンを添加すると還元が進行した。さらに、それらの酸化と還元の効果が相殺されるケースもみられた。特定元素の周辺局所構造は、主に廃棄物充填率の影響を受けるZn、廃棄物充填率とリン添加の両方の影響を受けるCe、どちらの影響も受けないZr元素に分類された。Moと他の元素の分析結果の比較から、添加したリンは遊離されたPO
構造単位として存在し、モリブデン酸イオンに配位するアルカリ金属を奪い取っている可能性があると考えられた。
永井 崇之; 岡本 芳浩; 山岸 弘奈*; 小島 一男*; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*
JAEA-Research 2022-008, 37 Pages, 2022/10
ホウケイ酸ガラス中のガラス成分や廃棄物成分の局所構造は、その化学組成によって変化する。本研究は、原料ガラスや模擬廃棄物ガラスを対象に軟X線領域のXAFS測定を実施し、原料ガラス成分のホウ素(B)やケイ素(Si)、廃棄物成分の鉄(Fe)やセシウム(Cs)の化学的状態等を評価した。模擬廃棄物ガラスの化学的安定性を把握するため、浸出試験に供した模擬廃棄物ガラス表面を対象に、FeのL、L
吸収端及びCsのM
、M
吸収端XANESスペクトルを測定した。その結果、浸出時間の経過とともにガラス試料重量の減少や浸出液中の溶出元素濃度の増加が確認された状況と同様、CsのM
、M
吸収端XANESスペクトルが消失し、FeのL
、L
吸収端スペクトル形状が変化することを確認した。また、浸出試験後の模擬廃棄物ガラスは、ラマン分光測定でも観察されたように表面に化合物層を形成するため、明瞭なBのK吸収端XANESスペクトルは得られないことが分かった。Na
O濃度によるSi局所構造への影響を確認するため、Na
O濃度が異なる原料ガラスを対象に、全電子収量法(PEY)でSiのK吸収端XANESスペクトルを測定した。その結果、Na
O濃度が高くなるとSiのK吸収端ピークエネルギーは低下し、7wt%Na
O前後でピーク強度が高くなることを確認した。
永井 崇之; 岡本 芳浩; 山岸 弘奈*; 太田 俊明*; 小島 一男*; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*
JAEA-Research 2021-010, 62 Pages, 2022/01
ホウケイ酸ガラス中のガラス成分や廃棄物成分の局所構造は、その化学組成によって変化する。本研究は、原料ガラスや模擬廃棄物ガラス試料を対象に軟X線領域のXAFS測定を実施し、ホウ素(B),酸素(O)やケイ素(Si)及び廃棄物成分の鉄(Fe)やセシウム(Cs)の化学的状態及び局所構造を評価した。化学組成や原料ガラス形態が異なるガラス試料をXAFS測定し、B及びOのK吸収端XANESスペクトルを比較すると、NaO濃度がB-Oの配位構造へ与える影響は廃棄物成分濃度による影響よりも大きく、OのK吸収端前に出現するプリエッジの高さはガラス試料に含まれるFe等の第一遷移金属元素の濃度に依存することが分かった。長期化学的耐久性を評価した浸出試験前後のガラス試料表面をXAFS測定し、OのK吸収端XANESスペクトルから、浸出試験後試料表面に新たな化合物相が形成した可能性があり、ラマン分光測定結果からも浸出試験後の試料表面状態に変化が観察された。またCsのM吸収端のXANESスペクトルから、浸出試験後試料表面のCsの消失が確認でき、Csは浸出液へ溶出し易いと考えられる。Na
O濃度が異なる原料ガラスと希土類酸化物を添加したガラス試料を対象に、SiのK吸収端XANESスペクトルを測定した結果、Na
O濃度が高くなるに従いSiのK吸収端ピークが低エネルギー側にシフトし、また希土類酸化物の種類によってSi周辺構造への影響が異なることを確認した。
岡本 芳浩; 小林 秀和; 塩飽 秀啓; 捧 賢一; 畠山 清司*; 永井 崇之
Journal of Non-Crystalline Solids, 551, p.120393_1 - 120393_8, 2021/01
被引用回数:2 パーセンタイル:25.45(Materials Science, Ceramics)模擬廃液を含有した鉄リン酸ガラス試料におけるルテニウムの化学状態を、X線吸収微細構造(XAFS)およびイメージングXAFSによって調べた。EXAFS分析の結果、30mol%FeO
-P
O
ベースガラスに、廃棄物成分が10wt.%以下の場合では、ルテニウムがガラス相に含まれることを示唆された。他の試料では、ルテニウムは、主に結晶性RuO
として存在することが確認された。イメージングXAFS分析からは、RuO
の析出が確認されたが、全ての試料において、大きさ50
m以下の小さいものであった。ホウケイ酸ガラス系で観察されるような、RuO
の凝集体は、本研究における鉄リン酸ガラス試料では確認されなかった。
永井 崇之; 岡本 芳浩; 山岸 弘奈*; 太田 俊明*; 小島 一男*; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*
JAEA-Research 2020-009, 48 Pages, 2020/09
廃棄物ガラス中のガラス成分や廃棄物成分の局所構造は、その廃棄物ガラスの化学組成によって変化する。本研究では原料ガラスや模擬廃棄物ガラス試料を作製し、軟X線領域のXAFS測定によりホウ素(B),酸素(O)及び廃棄物成分のセリウム(Ce)やセシウム(Cs)等の化学的状態及び局所構造を評価した。化学組成や原料ガラス形態等が異なるガラス試料を対象に、BのK吸収端XANESスペクトルを測定した結果、NaO濃度が高くなるとB-Oの4配位sp
構造(BO
)の存在比が高まる傾向を確認した。また、OのK吸収端XANESスペクトルを測定した結果、OのK吸収端スペクトルで観察されるプリエッジの高さは、試料中のFe濃度に依存することを確認した。長期化学的耐久性を評価した浸出試験前後のガラス試料表面を対象に、BのK吸収端XANESスペクトルを測定した結果、浸出試験後に試料表面のB-Oの4配位sp
構造(BO
)の存在比が高まる傾向を確認した。また、CeやCsのM吸収端等のXANESスペクトルを測定した結果、表層に存在するCeは浸出試験により酸化され、表層のCsの多くが浸出試験後に失われていることを確認した。また、XAFS測定に供したガラス試料の状態をラマン分光測定で確認した結果、原料ガラス形態や作製方法によって同様な化学組成であってもラマンスペクトルが異なることを確認した。
永井 崇之; 捧 賢一; 岡本 芳浩; 塩飽 秀啓; 山岸 弘奈*; 太田 俊明*; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*; 高橋 友恵*; et al.
JAEA-Research 2019-003, 94 Pages, 2019/09
廃棄物ガラス中のガラス成分や廃棄物成分の局所構造は、固化体の化学組成によって変化する。本研究は、リン又はバナジウムを添加したホウケイ酸ガラスと模擬廃液から模擬廃棄物ガラス試料を作製し、廃棄物濃度によるガラス成分の軽元素や廃棄物成分の希土類元素等の化学状態及び局所構造をXAFS測定により評価した。
永井 崇之; 岡本 芳浩; 塩飽 秀啓; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*; 廣野 和也*; 本間 将啓*; 小林 博美*; 高橋 友恵*; et al.
JAEA-Research 2018-007, 87 Pages, 2018/11
本研究は、資源エネルギー庁の「放射性廃棄物の減容化に向けたガラス固化技術の基盤研究事業」における、高レベル放射性廃液の充填率を高められる原料ガラス組成の開発として実施した。候補組成であるバナジウム(V)添加ガラス原料カレットへ模擬高レベル放射性廃液を混合溶融して作製した模擬廃棄物ガラス試料を対象に、レーザアブレーション(LA)法ICP-AES分析, ラマン分光測定及び放射光XAFS測定により評価を実施した。
斎藤 滋; 深谷 清*; 石山 新太郎; 佐藤 育男*; 楠橋 幹雄*; 畠山 剛*; 高橋 平七郎*; 菊池 満
JAERI-Tech 2002-047, 51 Pages, 2002/05
日本原子力研究所と(株)日本製鋼所は、共同でNi,Coが無添加のMn-Cr系低放射化鋼の開発を進めてきた。初めに合金成分と製造工程の検討を行い、平成9年度までにVCシリーズと名付けられた数鋼種を試作した。本報告書ではこれらの鋼種の特性評価試験の一つとして、耐食性試験を行った。ステンレス鋼の腐食試験の結果、各鋼種の相やMn量,C量と耐食性の関係,鋭敏化による腐植度の変化量などを調べた。また、非磁性の鋼種については、JT-60等の真空容器や遮蔽体の使用環境を想定した耐食試験(純水・80・3500時間)の結果、全面・間隙腐食試験では重量変化は殆ど無かった。ダブルU-ベンド試験でも割れの発生は見られなかった。
斎藤 滋; 深谷 清; 石山 新太郎; 衛藤 基邦; 佐藤 育男*; 楠橋 幹雄*; 畠山 剛*; 高橋 平七郎*; 菊池 満
Journal of Nuclear Materials, 283-287(Part1), p.593 - 596, 2000/12
被引用回数:1 パーセンタイル:12.22(Materials Science, Multidisciplinary)現在、日本原子力研究所(以下原研)では、JT-60UのITER高性能化試験の終了後に定常炉心試験装置(以下JT-60SU)の検討・評価作業を進めている。このJT-60SUの真空容器鋼としては高強度、低放射化かつ非磁性であることが求められており、原研と(株)日本製鋼所は共同でNi,Coが無添加で低Mn型の低放射化非磁性鋼の開発を進めてきた。現在までにVC9と呼ばれる鋼種が有望であるという結果を得ている。本研究ではVC9の機械的特性や溶接性などの特性評価を行った。機械的特性試験は高温引張り,シャルピー試験,疲労及び破壊靭性試験を行った。その結果、VC9の室温~500の引張り強度はSUS316Lを大きく上回り、真空容器鋼として十分な高温強度を持つ鋼種であることがわかった。また、疲労試験(室温)でもSUS316Lの約2倍の疲労寿命を持つことがわかった。溶接性評価としては組織観察、硬さ及びフェライト量測定などを行った。
斎藤 滋; 深谷 清; 石山 新太郎; 佐藤 育男*; 楠橋 幹雄*; 畠山 剛*; 高橋 平七郎*; 菊池 満
JAERI-Tech 2000-047, 64 Pages, 2000/08
現在、日本原子力研究所(以下原研)では、核融合炉の実現に向けて定常炉心試験装置(以下JT-60SU)の検討・評価作業を進めている。このJT-60SUの真空容器鋼としては、高強度、低放射化かつ非磁性であることが求められている。しかし既存の鋼種でそれらの要求を満たすものはないため、原研と(株)日本製鋼所は共同でNi,Coが無添加で低Mn型の低放射化非磁性鋼の開発を進めてきた。はじめに合金成分と製造行程の検討を行い、平成9年度までにVC9と名付けた鋼種が有望であるという結果を得た。平成10年度以降はこのVC9のJT-60SU真空容器鋼としての適性評価として、機械的特性・溶接性・耐食性・時効特性などさまざまな特性試験を行っている。本報告書はそれらの結果の中から物理的特性及び時効特性についてまとめたものである。
石山 新太郎; 深谷 清; 衛藤 基邦; 菊池 満; 佐藤 育男*; 楠橋 幹雄*; 畠山 剛*; 高橋 平七郎*
日本原子力学会誌, 42(2), p.116 - 123, 2000/02
被引用回数:2 パーセンタイル:19.68(Nuclear Science & Technology)本研究では、JT-60SUの使用条件に基づき、将来の核融合炉大型構造材料として、低放射化、高比強度、非磁性であり、核発熱の少ない低コスト材料の開発を目標にMn及びCrを主成分とし、CとNを低減化した鋼種の製造並びに評価を行った。その結果、下記の結論が得られた。(1)Mn-Cr鋼種の新しい組織状態図を得るとともに、これをもとに安定したオーステナイト単相が得られる15.5Mn-16Cr-0.2C-0.2N組織を見いだし、その最適製造条件を把握した。(2)JT-60SU計画運転停止から約20年後において放射化レベルは、SUS316L等既存材料に比較して、1桁以上低い。(3)比強度は、SUS316Lに比して約2倍以上である。(4)熱伝導率は従来材より高く、運転中並びに運転停止後の核発熱による実験装置の異常温度上昇の危険性は少ない。
斎藤 滋; 深谷 清; 石山 新太郎; 衛藤 基邦; 佐藤 育男*; 楠橋 幹雄*; 畠山 剛*; 高橋 平七郎*; 菊池 満
JAERI-Tech 99-076, p.53 - 0, 1999/10
現在、日本原子力研究所(以下原研)では、核融合炉の実現に向けて定常炉心試験装置(以下JT-60SU)の検討・評価作業を進めている。このJT-60SUの真空容器鋼としては、高強度、低放射化かつ非磁性であることが求められている。しかし既存の鋼種でこれらの要求を満たすものはないため、原研と(株)日本製鋼所は共同でNi,Coが無添加で低Mn型の低放射化非磁性鋼の開発を進めてきた。初めに合金と製造工程の検討を行い、平成9年までにVC9と名付けた鋼種が有望であるという結果を得た。平成10年度以降はこのVC9のJT-60SU真空容器鋼としての適性評価として、機械的特性・溶接性・耐食性・相安定性などさまざまな特性試験を行っている。本報告書はそれらの結果の中から機械的特性と溶接性についてまとめたものである。
永井 崇之; 西澤 代治; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*; 関 克巳*; 大山 孝一; 狩野 茂
no journal, ,
模擬廃液固化体ガラス中に含まれる溶存種の酸化還元挙動を評価するため、溶融ホウケイ酸ガラスのCV測定手法を検討するとともに、模擬廃液固化体ガラスを対象に900CでのCV測定を試みた結果について報告する。
永井 崇之; 捧 賢一; 大山 孝一; 佐藤 修彰*; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*
no journal, ,
ガラス固化処理プロセスにおいて、高レベル廃液中のRuはルテニウム酸ナトリウムを経てRuO針状結晶として析出すると考えられる。当該プロセス中のRu挙動を理解するには、ルテニウム酸ナトリウムの生成過程を把握する必要があり、本研究ではルテニウム酸ナトリウムの合成及び評価を行った。研究の結果、Ru化合物とNaNO
を混合し、NaNO
の熱分解温度以上に加熱するとNa
RuO
, Na
RuO
, Na
RuO
等のルテニウム酸ナトリウムを合成でき、生成したNa
RuO
は1000
C付近まで熱的に安定であることが分かった。
永井 崇之; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*; 関 克巳*
no journal, ,
使用済核燃料再処理プロセスで発生した高レベル放射性廃液は、ガラス溶融炉内でホウケイ酸ガラス原料と溶融混合し、化学的に安定なガラス固化体に処理する。ガラス溶融炉の加熱は交流通電によるジュール熱を利用するため、通電による酸化還元反応を示す化学種の存在が想定され、溶融ガラスに含まれる化学種を対象に酸化還元挙動の評価を進めている。本報では、溶融ガラス中の溶解度が低いRuOを対象に、Ru含有ホウケイ酸ガラスをCV測定しRuO
の酸化還元挙動を評価した。
永井 崇之; 捧 賢一; 大山 孝一; 佐藤 修彰*; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*
no journal, ,
ガラス固化体中のRuO針状結晶はルテニウム酸ナトリウムを経て生成すると考えられることから、Na
RuO
とガラス原料の主成分であるSiO
の高温反応を観察し、900
C以上でRuO
が生成することを確認した。
永井 崇之; 捧 賢一; 大山 孝一; 佐藤 修彰*; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*
no journal, ,
ガラス固化プロセスでは、廃液が乾燥・脱硝を経てガラス原料と反応し、ルテニウム酸ナトリウムを生成すると想定される。また、廃液乾燥時に生成するランタニド硝酸塩も脱硝時に複合化合物の生成が予想され、ルテニウム硝酸塩を添加した反応実験の結果、ルテニウムを含む複合化合物が生成する可能性を見出した。
永井 崇之; 小林 秀和; 畠山 清司*; 佐藤 誠一*; 岡本 芳浩
no journal, ,
原子力機構では、高レベル放射性廃液のガラス固化処理プロセスに係る技術開発として、核分裂生成物である希土類酸化物や白金族化合物を模擬添加したホウケイ酸ガラスを対象に、放射光XAFS測定によるこれら元素の化学状態の調査を進めている。本研究では、CeOとともにガラス固化体に含まれる希土類酸化物又は酸化鉄をガラス原料に添加溶融させた試料を作製し、添加元素の種類等によるホウケイ酸ガラス中のCe原子価への影響を評価した結果、ガラス中に鉄が含まれることでCe(IV)がCe(III)に還元することを明らかにした。
永井 崇之; 小林 秀和; 岡本 芳浩; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*; 関 克巳*
no journal, ,
使用済核燃料再処理プロセスで発生した高レベル放射性廃液は、ガラス溶融炉内でホウケイ酸ガラス原料と溶融混合し、化学的に安定なガラス固化体に処理する。溶融炉の加熱は交流通電によるジュール熱を利用しており、溶存化学種の酸化還元反応が想定されることから、廃液に含まれる化学種の酸化還元挙動評価を進めている。本報では、模擬ガラス固化体試料のXAFS測定で複数の原子価の存在が確認されたCe(III/IV)及びFe(II/III)を対象に、溶融ガラス中における酸化還元挙動を評価し、溶融ガラス中でCe(IV)+Fe(II)Ce(III)+Fe(III)交換反応が進行することを確認した。
永井 崇之; 小林 秀和; 岡本 芳浩; 佐藤 修彰*; 猪瀬 毅彦*; 佐藤 誠一*; 畠山 清司*; 関 克巳*
no journal, ,
ガラス固化プロセスでは、廃液から生成したRu化合物がガラス原料と反応し、RuO結晶が成長すると推定されることから、Ru-La-Na混合硝酸塩とガラス原料を添加して加熱し、RuO
の生成状況を確認した。