Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
田辺 哲朗*; 杉山 一慶*; 柴原 孝宏*; 広畑 優子*; 吉田 雅史; 正木 圭; 佐藤 正泰
Journal of Nuclear Materials, 390-391, p.705 - 708, 2009/06
被引用回数:8 パーセンタイル:50.97(Materials Science, Multidisciplinary)JT-60Uのダイバータ領域,第一壁への軽水素(H),重水素(D),三重水素(T)のすべての蓄積状態をレビュー,壁の温度,再堆積層の有無等を勘案して、将来のDT炉において、DD放電による同位体置換がどの程度有効かを評価した。放電に使われた軽水素,重水素、及びDD反応で発生した三重水素それぞれが蓄積量,蓄積深さ分布が異なっており、その理由を検討した。これにより高エネルギーで入射する三重水素,NBI加熱パワーの低い軽水素,壁温度等の役割を定性的にではあるが、ほぼ明らかにすることができた。また、軽水素,重水素の蓄積量及び深さ分布及びそれらの壁温度による違いから、DD放電後のHH放電において重水素が軽水素によって置換されたことを明らかにし、その置換は壁温度によってかなり異なるものの、プラズマ対向面の表面では非常に有効であると結論した。
正木 圭; 田辺 哲朗*; 広畑 優子*; 大矢 恭久*; 柴原 孝宏*; 林 孝夫; 杉山 一慶*; 新井 貴; 奥野 健二*; 宮 直之
Nuclear Fusion, 47(11), p.1577 - 1582, 2007/11
被引用回数:14 パーセンタイル:46.57(Physics, Fluids & Plasmas)本研究では、炉内の水素同位体残留量の定量評価及び残留過程を明らかにすることを目的として、従来のダイバータ領域に加え、第一壁及びプラズマから影の部分における炭素の損耗/再堆積分布及び水素同位体蓄積分布を評価した。真空容器内全体でプラズマ対向壁を観察した結果、おもに外側ダイバータ及び上部第一壁が損耗領域であり、内側ダイバータ及び内側第一壁が堆積領域であった。トロイダル方向の対称性を仮定したダイバータ領域全体の損耗/再堆積量は損耗量0.34kg、再堆積量(ダスト含む)0.55kgであり、この差0.21kgが第一壁領域の損耗が寄与していると考えられる。また、最も厚い再堆積層(内側ダイバータ)に蓄積された水素同位体蓄積濃度を評価した結果、(H+D)/C0.02であった。真空容器ベーキング温度を150
Cに下げた運転後、プラズマから影の部分であるダイバータ下部を調べた結果、約2
mの堆積層があり(H+D)/Cが約0.8と高いことがわかった。しかし、この領域における炭素堆積率は、8
10
atoms/sとタイル表面の炭素堆積率(6
10
atoms/s)と比較すると約一桁小さい値であった。
大矢 恭久*; 広畑 優子*; 中畑 俊彦*; 須田 泰市*; 吉田 雅史*; 新井 貴; 正木 圭; 奥野 健二*; 田辺 哲朗*
Fusion Science and Technology, 52(3), p.554 - 558, 2007/10
被引用回数:0 パーセンタイル:0.01(Nuclear Science & Technology)JT-60Uで用いられた第一壁グラファイトタイル表面の水素同位体蓄積挙動を評価するために、SEM, TDS, XPS及びSIMSを用いて、主要なタイルの堆積・損耗分布及び水素同位体蓄積量を調べた。その結果、第一壁上側は厚いボロン膜に覆われていた。一方、第一壁下側ではボロンと炭素の混合膜が形成していた。ポロイダル方向の重水素分布は比較的均一であることがわかったが、TDSによる重水素脱離挙動はタイルの位置により大きく異なっていた。第一壁上側では厚いボロン膜に覆われており、重水素TDSスペクトルは第一壁下側のボロン濃度が低い膜中の重水素脱離温度と比べて低い温度で放出ピークが観測された。また、第一壁タイルにおけるD/H比はダイバータタイルで測定されたD/H比よりも明らかに大きく、第一壁へのNBIによる高エネルギーの重水素の打ち込みによる影響が考えられた。さらに、ダイバータと比較して第一壁では放電実験中の温度が573Kと低いため、打ち込まれた重水素の脱離が少なく、D/H比が高くなったと推察された。
広畑 優子*; 田辺 哲朗*; 大矢 恭久*; 奥野 健二*; 正木 圭; 宮 直之; JT-60Uチーム
Journal of Nuclear Materials, 363-365, p.854 - 861, 2007/06
被引用回数:11 パーセンタイル:62.3(Materials Science, Multidisciplinary)JT-60Uの両側排気方式ダイバータ領域における炭素堆積・損耗及び水素同位体の保持特性について走査型顕微鏡,昇温脱離法,二次イオン質量分析計,イメージングプレート法及び燃焼法を用いて測定した。その結果を以下にまとめる。(1)JT-60Uのダイバータ領域ではおもに内側ダイバータ及び外側ドームウィングタイルで炭素堆積が見られ、外側ダイバータタイルでは損耗していた。(2)ダイバータタイルのプラズマ対向面のH+Dの保持量は堆積層の厚さに比例して増加した。その水素濃度(H+D)/Cは約0.02であり、片側排気の内側ダイバータタイルやJT-60とほぼ同程度であり、JETやほかの低温で運転されている装置(0.40.1)よりも小さかった。(3)外側ドームウィングタイルの排気口に面しているタイル上には厚い再堆積層が存在していた。しかし、その濃度は大きく見積もっても0.13であった。(4)H+D保持量のポロイダル側面の分布は外側ドームウィングの排気口に面している以外は少なかった。(5)H+D保持量のトロイダル側面の分布は、面によって約2倍の違いがあったが、堆積膜の膜厚によって強く影響を受けていた。
正木 圭; 田辺 哲朗*; 広畑 優子*; 大矢 恭久*; 柴原 孝宏*; 林 孝夫; 杉山 一慶*; 新井 貴; 奥野 健二*; 宮 直之
Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03
本研究では、炉内の水素同位体残留量の定量評価及び残留過程を明らかにすることを目的として、従来のダイバータ領域に加え、第一壁及びプラズマから影の部分における炭素の損耗/再堆積分布及び水素同位体蓄積分布を評価した。真空容器内全体でプラズマ対向壁を観察した結果、おもに外側ダイバータ及び上部第一壁が損耗領域であり、内側ダイバータ及び内側第一壁が堆積領域であった。トロイダル方向の対称性を仮定したダイバータ領域全体の損耗/再堆積量は損耗量0.34kg、再堆積量(ダスト含む)0.55kgであり、この差0.21kgが第一壁領域の損耗が寄与していると考えられる。また、最も厚い再堆積層(内側ダイバータ)に蓄積された水素同位体蓄積濃度を評価した結果、(H+D)/C0.02であった。真空容器ベーキング温度を150
Cに下げた運転後、プラズマから影の部分であるダイバータ下部を調べた結果、約2
mの堆積層があり(H+D)/Cが約0.8と高いことがわかった。しかし、この領域における炭素堆積率は、8
10
atoms/sとタイル表面の炭素堆積率(6
10
atoms/s)と比較すると約一桁小さい値であった。
都筑 和泰; 神谷 健作; 篠原 孝司; Bakhtiari, M.*; 小川 宏明; 栗田 源一; 武智 学; 河西 敏; 佐藤 正泰; 川島 寿人; et al.
Nuclear Fusion, 46(11), p.966 - 971, 2006/11
被引用回数:16 パーセンタイル:49.57(Physics, Fluids & Plasmas)JFT-2Mでは、発電実証炉のブランケット構造材の有力候補である低放射化フェライト鋼のプラズマへの適用性を調べる「先進材料プラズマ試験」を段階的に進めてきた。核融合原型炉では壁安定化効果を利用して規格化ベータ3.55.5程度のプラズマを生成することが想定されているため、フェライト鋼のような強磁性体壁をプラズマに近づけた時のMHD安定化への影響を評価することは応用上重要である。そこで、壁とプラズマとの距離を変え、安定化効果を調べる実験を行った。まずプラズマの位置,圧力をより正確に評価するための平衡計算コードの改良を行った。改良後のコードを実験と比較し、良い一致が見られた。そのうえでプラズマを壁に近づける実験を行い、プラズマ小半径で規格化した壁との距離が1.3程度の範囲までフェライト鋼壁と高規格化ベータプラズマが共存し得ることを実証した。また、壁との距離以外の条件が共通しているデータセットを抽出し、壁に近い配位の方が(1)
限界が上昇する、(2)コラプスに至る時定数が長くなるなど、壁安定化効果の存在を示唆するデータが得られた。
柴原 孝宏*; 田辺 哲朗*; 広畑 優子*; 大矢 恭久*; 小柳津 誠*; 吉河 朗*; 大西 祥広*; 新井 貴; 正木 圭; 奥野 健二*; et al.
Journal of Nuclear Materials, 357(1-3), p.115 - 125, 2006/10
被引用回数:20 パーセンタイル:79.78(Materials Science, Multidisciplinary)JT-60UのW型ダイバータで、重水素放電に曝された炭素材タイルからポロイダル方向に試料をサンプリングし、昇温脱離(TDS)実験を行うことでタイル中の水素同位体の蓄積量をTDS及びSIMSで評価した。外側ダイバータタイルは、厚い再堆積層に覆われており、その再堆積層中の水素濃度は場所によらずほぼ一定で(D+H)/Cの原子比で約0.03であった。このように水素濃度が低いのはタイル表面の再堆積層がプラズマ入熱によりかなり温度があがっていたためである。DD放電終了後トリチウム除去のために行われたHH放電により、さらに再堆積層の厚さが増加するとともに、先に蓄積されていたDの一部はHに置き換えられていることがわかった。放電中の温度の上昇,ダイバータの幾何学的構造が水素の蓄積に大きな影響を持つことを明らかにした。
柴原 孝宏*; 田辺 哲朗*; 廣畑 優子*; 大矢 恭久*; 小柳津 誠*; 吉河 朗*; 大西 祥広*; 新井 貴; 正木 圭; 奥野 健二*; et al.
Nuclear Fusion, 46(10), p.841 - 847, 2006/10
被引用回数:17 パーセンタイル:51.62(Physics, Fluids & Plasmas)JT-60でダイバータタイルとして使用され、軽水素放電に曝された黒鉛タイルからポロイダル方向に試料をサンプリングし、昇温脱離(TDS)実験を行うことでタイル中の水素蓄積量を評価した。なお、タイルのプラズマ対向面のほとんどは再堆積層で覆われていた。得られたTDSスペクトルの構造は、再堆積層の非常に薄い試料を除けば試料による差は少なく、タイル中に蓄積されていた水素の大部分は水素分子の形態で、970K付近に脱離のピークが存在した。全脱離水素量は再堆積層の厚さにほぼ比例していた。この結果は、ほとんどの水素原子が再堆積層中に均一に蓄積されていたことを示している。求めた水素濃度はH/C=0.03となり、飽和水素濃度(H/C=0.4-1.0)に比べて非常に低かった。水素濃度が低くなった原因として、水素蓄積時に再堆積層の温度が関係していたと考えられ、壁温度を高くすることで水素蓄積量を大幅に減少できる。
都筑 和泰*; 木村 晴行; 草間 義紀; 佐藤 正泰; 川島 寿人; 神谷 健作; 篠原 孝司; 小川 宏明; 上原 和也; 栗田 源一; et al.
Fusion Science and Technology, 49(2), p.197 - 208, 2006/02
被引用回数:11 パーセンタイル:61.42(Nuclear Science & Technology)低放射化フェライト鋼は核融合原型炉のブランケット構造材の有力候補である。しかし、強磁性体であるため、プラズマの生成,制御,閉じ込め,安定性等に悪影響を与えることが懸念されていた。また、酸素不純物の吸蔵量が大きいことから、プラズマ中に不純物を放出することも懸念された。JFT-2Mでは段階的にフェライト鋼を導入して適合性試験を進めた。その最終段階では、真空容器内壁の全面にフェライト鋼を設置して実験を行った。プラズマ生成,制御に関しては、フェライト鋼によって生成される磁場が、外部磁場の10%程度であり、トカマクプラズマが既存の制御系で生成可能であることを示した。また、高規格化ベータプラズマに対する適合性を調べる実験を行い、フェライト鋼壁の存在下でも原型炉の運転領域に相当する規格化ベータ3.5程度のプラズマが生成できることを実証した。壁に近づけると不安定性の成長速度が遅くなることを示し、フェライト鋼壁が非磁性導体壁と同様の壁安定化効果を持つことを示した。低ベータでのロックトモード,Hモード遷移等にも悪影響は観測されなかった。以上のように、フェライト鋼の原型炉への適用に対し見通しを与える結果が得られた。
大矢 恭久*; 廣畑 優子*; 田辺 哲朗*; 柴原 孝宏*; 木村 宏美*; 小柳津 誠*; 新井 貴; 正木 圭; 後藤 純孝*; 奥野 健二*; et al.
Fusion Engineering and Design, 75-79, p.945 - 949, 2005/11
被引用回数:9 パーセンタイル:54.19(Nuclear Science & Technology)JT-60Uの内側ダイバータ中の水素と重水素の分布及び滞留量を二次イオン質量分析法(SIMS)及び昇温脱離法(TDS)、また再堆積層の有無及び厚みを走査電子顕微鏡(SEM)を用いて評価した。その結果、ほとんどの水素及び重水素は再堆積層(HH再堆積層またはDD再堆積層)に滞留していた。重水素放電時に高い熱出力があったため、DD再堆積層中の重水素はHH再堆積層中の水素よりもかなり少なかった。再堆積層が存在しない排気ポート近くでは表面近傍に重水素がおもに存在し、これが主要な水素のプロファイルとなっていた。これらの結果から推定されるトリチウムの滞留挙動は放電履歴及び温度に強く影響されることが明らかとなった。グラファイトタイルや再堆積層中のトリチウム滞留量は、核融合炉運転中の温度を上げることによって大幅に低減することが可能であると言える。
廣畑 優子*; 柴原 孝宏*; 田辺 哲朗*; 大矢 恭久*; 新井 貴; 後藤 純孝*; 正木 圭; 柳生 純一; 小柳津 誠*; 奥野 健二*; et al.
Fusion Science and Technology, 48(1), p.557 - 560, 2005/07
被引用回数:3 パーセンタイル:24.93(Nuclear Science & Technology)JT-60Uで重水素と水素放電に曝されたダイバータタイル中の水素同位体保持特性を昇温脱離法と二次イオン質量分析法で測定した。JT-60Uのタイルから放出する主な気体はH2, HD, D2とCH4であった。内側ダイバータタイルの水素同位体保持量は、再堆積層の厚さに比例して増加した。この直線の勾配より求めた再堆積層中の水素濃度は約0.02で、JT-60で水素放電に曝されたタイルの値に類似し、他のプラズマ実機装置に比べて極めて低かった。この理由として、JT-60Uの運転温度が300Cであったこと、再堆積層がポーラスで基板との熱接触が劣化し、放電中にタイル表面の温度が上昇したものと考えられる。損耗を受けていた外側ダイバータタイルは、内側ダイバータタイルに比べてH保持量が少なく、バッフル板でも同様な傾向が見られた。ドームトップタイルは外側バッフル板とほぼ同程度の保持量であった。タイル中に保持されたDとHの比(D/H)はほぼ0.4であり、放電回数が少なかったHの方がむしろ多く保持されており、表面近傍に保持されていたDが水素放電中に交換されていたことを示唆している。同じことは水素同位体の深さ分析の結果でも示されている。再堆積層直下にも重水素が保持されていた。
正木 圭; 杉山 一慶*; 林 孝夫; 落合 謙太郎; 後藤 純孝*; 柴原 孝宏*; 廣畑 優子*; 大矢 恭久*; 宮 直之; 田辺 哲朗*
Journal of Nuclear Materials, 337-339, p.553 - 559, 2005/03
被引用回数:26 パーセンタイル:84.83(Materials Science, Multidisciplinary)JT-60Uにおいて、DD反応で生成されたトリチウム及び重水素のプラズマ対向壁への蓄積分布を評価し、真空容器内での水素同位体挙動を調べた。(1)プラズマ対向壁に蓄積されたトリチウムのIP及び燃焼法による測定と、損耗及び再堆積測定から以下の結果を得た。ドーム頂部でトリチウム濃度が最も高く、厚い堆積層が存在する内側ダイバータ部では低かった。(2)この結果とOFMC解析結果から、JT-60Uで得られたトリチウム分布は、DD反応で生成された高エネルギー(1MeV)トリチウムがリップルロスによりプラズマから損失し、エネルギーをあまり失うことなく壁に深く入射されたものであることが明らかとなった。(3)NRAによる重水素蓄積量測定結果では、プラズマ対向壁における重水素分布は、トリチウム分布と異なり、最も高い重水素蓄積量を示したドーム外側ウイングでもD/C0.05と低い値を示した。厚い堆積層の存在する内側ダイバータではさらに低く、D/C
0.01以下であった。いずれの結果も、共堆積により多くのトリチウムが残留するJETのトリチウム分布とは大きく異なり、JT-60Uプラズマ対向壁における水素同位体の挙動は、それぞれの粒子のプラズマ対向壁への入射分布及び壁(炉内構造物)温度の影響を受けていることを示すものである。
廣畑 優子*; 柴原 孝宏*; 田辺 哲朗*; 新井 貴; 後藤 純孝*; 大矢 恭久*; 吉田 肇*; 森本 泰臣*; 柳生 純一; 正木 圭; et al.
Journal of Nuclear Materials, 337-339, p.609 - 613, 2005/03
被引用回数:13 パーセンタイル:66.68(Materials Science, Multidisciplinary)JT-60の水素放電期間に使用された下部ダイバータタイル中の水素保持特性を昇温脱離法(TDS),二次イオン質量分析法(SIMS)と弾性反跳検出法(ERDA)で測定した。その結果は以下のようである。(1)JT-60のダイバータタイル上には最大で70ミクロンの再堆積層が堆積していた。(2)単面積あたりの水素保持量は再堆積層の厚さに比例して増加した。(3)再堆積層中の水素濃度が膜中で均一であり、再堆積層の密度がバルクの等方性黒鉛と同じであると仮定して、この比例定数から再堆積層中の水素濃度を求めた。(4)再堆積層中の水素濃度は約0.015であり、この値は他のプラズマ実機装置の再堆積層中の水素濃度に比べて低かった。(5)再堆積層を除去した試料中の水素濃度は直線の外挿点よりも低いことから、再堆積層直下にも水素が保持されていることを示唆している。(6)このような低い水素濃度になった理由としてJT-60は運転温度が300Cであったことと、再堆積層がポーラスで基板との熱接触が劣化し、放電中にタイル表面の温度が上昇したものと考えられる。(7)タイル温度を300
C以上に保つことができれば、トリチウムインベントリーを少なくできる。
小川 宏明; 山内 有二*; 都筑 和泰; 川島 寿人; 佐藤 正泰; 篠原 孝司; 神谷 健作; 河西 敏; 草間 義紀; 山口 薫*; et al.
Journal of Nuclear Materials, 329-333(Part1), p.678 - 682, 2004/08
被引用回数:4 パーセンタイル:29.96(Materials Science, Multidisciplinary)JFT-2Mでは原型炉の構造材として有力視されている低放射化フェライト鋼(F82H)を段階的に真空容器内に設置して高性能プラズマとの適合性を試験する「先進材料プラズマ適合性試験」を実施している。フェライト鋼はその化学的特性(錆びやすい)から酸素不純物の増加が懸念されている。また、重水素保持特性に関してはこれまで十分なデータの蓄積がない。そこで、フェライト鋼を真空容器内壁の20%に設置した場合と全面に設置した場合の不純物挙動を分光診断で測定した。その結果、真空容器内壁全面に設置した場合であっても、プラズマが直接相互作用をしない位置に設置した場合では、不純物放出が大きな問題とならないことを示す結果を得た。また、フェライト鋼の重水素保持特性では、重水素はおもに酸化層に吸蔵され、機械研摩等により酸化層を除去した状態では、構造材として広く用いられているSUS-316Lと同様であることを示す結果を得た。
都筑 和泰; 篠原 孝司; 神谷 健作; 川島 寿人; 佐藤 正泰; 栗田 源一; Bakhtiari, M.; 小川 宏明; 星野 克道; 河西 敏; et al.
Journal of Nuclear Materials, 329-333(1), p.721 - 725, 2004/08
被引用回数:7 パーセンタイル:45.85(Materials Science, Multidisciplinary)低放射化フェライト鋼は核融合原型炉のブランケットの有力な候補材料であるが、強磁性体であり不純物の吸蔵量も大きいことから高性能プラズマとの共存性の実証が不可欠である。JFT-2Mにおいては、原研炉のブランケット壁を模擬するため、真空容器の内壁全面にフェライト鋼を設置し、適合性試験を行っている。プラズマ生成,制御に関しては、フェライト鋼によって生成される磁場が、外部磁場の10%程度であることを示し、トカマクプラズマが既存の制御系で生成可能であることを示した。さらに、原型炉においても、制御に対する影響はJFT-2Mと同程度と予測されることを示した。また、原型炉で想定されている高規格化ベータプラズマに対する適合性を調べる実験を行い、フェライト鋼壁の存在下でも壁無しの安定化限界に近い、規格化ベータ3.3程度のプラズマが生成できることを実証した。この配位をベースにしてプラズマを全体的に弱磁場側の壁に近付けたところ、ディスラプション直前のモードの成長速度が壁の時定数程度(数ms)まで低減した。これは壁安定化効果の存在を示唆する。その他、低ベータでのロックトモード,Hモード遷移等にも悪影響は観測されておらず、フェライト鋼の原型炉への適用に対し、明るい見通しを与える結果が得られた。
宮 直之; 田辺 哲朗*; 西川 正史*; 奥野 健二*; 廣畑 優子*; 大矢 恭久*
Journal of Nuclear Materials, 329-333(1), p.74 - 80, 2004/08
被引用回数:12 パーセンタイル:62.59(Materials Science, Multidisciplinary)JT-60Uでのプラズマ壁相互作用の研究を行うため、平成13年度よりJT-60U第一壁を利用した大学との協力研究(JT-60Uにおけるプラズマ壁相互作用とトリチウム蓄積及び炉内構造物の照射後試験に関する研究)を開始した。本報告は、おもに初期2年間で得られた研究活動成果をまとめたものである。各大学や研究施設が得意とする分野での研究を実施して、短期間で多くの研究成果を得ることができた。主な成果は以下である。(1)イメージングプレート法によりプラズマ対向壁でのトリチウム分布を測定し、高速トリトンの軌道計算結果と比較した。(2)ダイバータ材料表面での損耗・再堆積分布をダイヤルゲージとSEMで観察した。(3)ダイバータ領域での水素,重水素深さ分布や化学形態をSIMS, XPSで分析した。(4)昇温脱離法で第一壁サンプルからのトリチウム脱ガス挙動を評価した。(5)真空容器からの排気ガス中トリチウム濃度を測定し、放電洗浄によるトリチウム脱ガス特性を調べた。
大矢 恭久*; 森本 泰臣*; 小柳津 誠*; 廣畑 優子*; 柳生 純一; 三代 康彦; 後藤 純孝*; 杉山 一慶*; 奥野 健二*; 宮 直之; et al.
Physica Scripta, T108, p.57 - 62, 2004/00
JT-60Uにおいて両側排気時期に使用された外側ダイバータタイル中の水素同位体挙動をSIMS,XPS,SEMを用いて調べた。その結果、タイル中央部分では水素同位体濃度が低 く、タイル両側で高いことがわかった。下側排気ポート近くで水素同位体濃度が最も 高く、この部分に多く観察される再堆積層中に存在している可能性が示唆された。タイル中央部では再堆積層に替わってエロージョンが支配的である。放電時にタイル表面温度が上昇し、水素同位体の多くが除去されたと推察できる。一方、上部ではタイル中央部ほどストライクポイントの頻度が少ないことから、表面に重水素放電後に実施した水素放電による水素が滞留している。また、タイル内部のカーボンファイバー上に再堆積層が存在しており、表面はエロージョンが支配的であるが、内部の堆積膜中には水素同位体が存在している可能性が示唆された。これらの結果より、外側ダイバータ部では主にエロージョンが支配的であるが、ストライクポイントの頻度が少ない場所において再堆積層が存在し、その内部に水素同位体が存在していること,タイル表面における水素同位体挙動はタイルの温度,損耗の効果,ストライクポイントの位置・頻度に大きく影響を受けること等が明らかとなった。
都筑 和泰; 木村 晴行; 川島 寿人; 佐藤 正泰; 神谷 健作; 篠原 孝司; 小川 宏明; 星野 克道; Bakhtiari, M.; 河西 敏; et al.
Nuclear Fusion, 43(10), p.1288 - 1293, 2003/10
被引用回数:39 パーセンタイル:75.02(Physics, Fluids & Plasmas)JFT-2Mでは、原型炉のブランケット構造材料の候補である低放射化フェライト鋼とプラズマとの適合性を調べる実験を進めてきている。昨年度にはフェライト鋼内壁を真空容器内に全面的に設置する作業を行い、今年度より実験を開始している。プラズマ生成,制御は問題なく行われ、金属不純物の放出も検出限界以下であった。改善閉じ込め(Hモード)も実現され、そのしきいパワーもこれまでと同等であった。プラズマ安定性に関してもこれまでの所悪影響は観測されておらず、規格化が3を超える放電との共存性も示された。高速イオンのリップル損失に関しても顕著な低減が実証された。以上のように、フェライト鋼の悪影響は小さく、有望な結果を得ている。JFT-2Mでは、その他にも先進的、基礎的な研究を行っている。先進的粒子供給手法であるコンパクトトロイド(CT)入射実験においては、再現性よくプラズマ中へ入射が行われ、CT入射に伴う密度の急上昇が初めて明確に観測された。
山口 薫*; 山内 有二*; 廣畑 優子*; 日野 友明*; 都筑 和泰
真空, 46(5), p.449 - 452, 2003/05
低放射化フェライト鋼は原型炉の候補材料であり、その燃料水素保持特性及びエロージョン特性評価は、原型炉におけるプラズマ壁相互作用の観点から非常に重要である。北海道大学においては、重水素のイオンビームを低放射化フェライト鋼に照射して、昇温脱離法によって水素吸蔵量を評価した。試料としては、3年程度大気中に放置したものと、鏡面研摩したものの2種類を用意した。オージェ電子分光法で組成分布を測定したところ、鏡面研摩の場合は酸化層が10nm以下であるのに対し、大気にさらした試料は80nm程度の酸化層ができていることがわかった。水素吸蔵量に関しては、水素照射量が少ない内は、大気にさらした試料の方が一桁程度大きいが、照射量が増えるにつれ差は小さくなった。照射量が51018D/cm
の場合、両者の吸蔵料はほぼ一致し、ステンレス鋼と同程度であった。これは、水素イオン照射により表面酸化層が除去されたことに対応すると考えられる。
廣畑 優子*; 元嶋 大*; 日野 友明*; 仙石 盛夫
Journal of Nuclear Materials, 313-316(1-3), p.172 - 176, 2003/03
被引用回数:13 パーセンタイル:65.41(Materials Science, Multidisciplinary)核融合炉材料候補材の一つである低放射化バナジウム合金(V-4Cr-4Ti)の、降温時における水素吸収を低減させるために酸化チタン層コーティングを試みた。この層の組成はTiOとTiCであり、そのうちTiO
は80%である。コーティング層の厚さを増大させるに従いバナジウム合金の水素吸収率は大幅に低減され、厚さ0.5
m,温度 573Kではコーティングしない場合の1/50までとなった。