Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
出井 俊太郎; 柴田 真仁*; 根岸 久美*; 杉浦 佑樹; 天野 由記; Bateman, K.*; Wilson, J.*; 横山 立憲; 鏡味 沙耶; 武田 匡樹; et al.
Results in Earth Sciences (Internet), 3, p.100097_1 - 100097_16, 2025/12
高レベル放射性廃棄物の地層処分において、セメントと泥岩の相互作用による化学的擾乱領域が形成され、岩盤中の核種移行特性に影響を及ぼす可能性がある。本研究では、11年前に幌延深地層研究センターの140m調査坑道に施工されたセメント(普通ポルトランドセメント(OPC)および低アルカリ性セメント(LAC))と泥岩の界面における変質状態について調査した。複数の分析手法を組み合わせることで、セメントの溶解、方解石やC-(A-)S-H相などの二次鉱物の析出、モンモリロナイトの陽イオン交換、泥岩の空隙率の低下など、セメントと岩石の界面における主要な反応が特定された。また、空隙率の低下による拡散の低下や、変質した泥岩中の二次鉱物への取り込みによる収着の促進など、セメントと泥岩の相互作用が放射性核種の移行に及ぼす影響についても明らかになった。
Ahmed, Z.*; Wu, S.*; Sharma, A.*; Kumar, R.*; 山野 秀将; Pellegrini, M.*; 横山 諒*; 岡本 孝司*
International Journal of Heat and Mass Transfer, 250, p.127343_1 - 127343_17, 2025/11
The study aims to measure boron concentration through the unidirectional diffusion of boron within the stainless steel (SS) layers while evaluating the updated model ability to replicate melt relocation behavior and geometry. In the current MPS simulations, one scenario employed dummy walls as heat sources, while another scenario used SS surface particles as heat sources to avoid interference with the melt flow as it reached the bottom of the specimen.
Pham V. H.; 倉田 正輝; 永江 勇二; 石橋 良*; 佐々木 政名*
Corrosion Science, 255, p.113098_1 - 113098_9, 2025/10
Being expected as materials for accident tolerant fuel cladding tube, oxidation behavior and kinetics of silicon carbide (SiC) under extreme conditions like severe accidents must be elucidated. In this study, oxidation tests of SiC at 1400-1600 C for 1-5 h, at atmospheric pressure, under two different flow rates of H
O/Ar gas mixture have been conducted to investigate the influence of steam flow rate on the formation of SiO
scale and its subsequent volatilization. The oxidation tests were conducted via a newly developed test facility using laser as a heat source. Oxidation kinetics of SiC was evaluated via mass change of samples before and after the oxidation tests. Parabolic oxidation rate representative for SiO
formation and linear volatilization rate reflecting its volatilization were calculated, based on these mass changes. The Arrhenius dependence of the parabolic oxidation and linear volatilization rate constants were then plotted. Results of this study indicated that SiC exhibits excellent performance under the conditions investigated. Steam flow rate has a significant influence on volatilization of SiO
but has minor effects over its formation. Oxidation of SiC in steam at high temperature may follow mass gain or mass loss regime, depending on the steam flow rate. Two oxidation patterns were suggested and discussed. In the first oxidation pattern, the SiO
formation is dominated over its volatilization. The second oxidation pattern (steady stage) is reached when the SiO
formation rate is equivalent to its volatilization rate. Time to reach this steady stage was defined, based on the parabolic oxidation rate and linear volatilization rate.
久保 光太郎; 森 憲治*; 村松 健
Nuclear Engineering and Design, 442, p.114176_1 - 114176_14, 2025/10
Nuclear fuel cycle facilities are important elements for supporting the efficient use of energy resources by establishing a nuclear fuel cycle. However, given that the risks of these facilities are lower than those of nuclear power plants, it is considered reasonable to apply simplified assessment methods when evaluating seismic risks. In this study, a simplified quantification method is proposed for seismic risk assessment at such facilities. Traditional simplified methods have streamlined the assessment process by selecting only representative components, often neglecting others. In contrast, the proposed method simplifies the required computational processes while considering all components by applying Clark approximation. Clark approximation is a mathematical method for approximating the maximum of two normal distributions as a new normal distribution. The proposed method was validated by comparing its seismic probabilistic risk assessment with those performed using Monte Carlo simulations and traditional simplified methods. Results showed that although the proposed method overestimated the high confidence of low probability of failure by a relative difference of 0.15 compared with that of the Monte Carlo method under completely independent condition, the overall plant-level fragility curve was generally within the range of the 5% and 95% confidence fragility curves. The proposed method accounted for the impact of correlated failure, which is critical in seismic risk assessments. Thus, this method enabled the seismic risk assessment of nuclear fuel cycle facilities in a simplified manner without compromising accuracy, potentially contributing to examining risk mitigation measures and developing risk-informed safety regulations for these facilities.
Luu, V. N.; 谷口 良徳; 宇田川 豊; 勝山 仁哉
Nuclear Engineering and Design, 442, p.114222_1 - 114222_15, 2025/10
For near-term application, coated-Zr alloy claddings show potential for enhancing safety by providing better oxidation resistance and minimizing hydrogen absorption under design-basis accidents (DBA). This benefit could extend the burnup and operational cycles of fuel rods. In assessing safety, reactivity-initiated accidents (RIA) are considered as one of the DBA conditions. The current safety criteria for high-temperature oxidation failure, one of the failure modes linked to RIA, are defined by peak fuel enthalpy values that range from 205 to 270 cal/g. This wide variability presents challenges when attempting to generalize criteria for modified-Zr alloy claddings with superior oxidation resistance. Therefore, it may be more relevant to apply failure criteria based on embrittlement mechanisms, such as oxygen concentration in the -Zr phase. This study aimed to assess the failure based on both peak fuel enthalpy and cladding embrittlement by analyzing previous NSRR experiments conducted with conventional materials using the RANNS fuel performance code. The findings suggest that the failure criteria associated with cladding embrittlement can provide a rational evaluation of failure behavior compared to the existing criterion based on peak fuel enthalpy. The local failure criterion leading to the formation of through-wall cracks during quenching is consistent with Chung's proposal (NUREG/CR-1344):
-Zr thickness of
0.9 wt% oxygen is less than 0.1 mm, and this corresponds to approximately 35% BJ-ECR.
Yin, W.*; 伊藤 啓太*; 坪和 優佑*; 辻川 雅人*; 白井 正文*; 梅津 理恵*; 高梨 弘毅
Journal of Magnetism and Magnetic Materials, 628, p.173157_1 - 173157_8, 2025/09
被引用回数:0FeN exhibits a large anomalous Nernst effect (ANE), which motivates a systematic study of enhancing the anomalous Nernst coefficient (S
) by modulating its electronic and magnetic structures. In this study, Mn and Co substitution effects for Fe in Fe
N on S
were investigated. Fe
Mn
N and Fe
Co
N films in wide ranges of x and y were grown epitaxially on MgO(001) and (LaAlO
)
(Sr
TaAlO
)
(001) substrates, respectively, using molecular beam epitaxy. The S
value of the Fe
N film is suppressed by substituting Fe with Mn or Co. By measuring the ANE, Seebeck effect, and anomalous Hall effect, the transverse thermoelectric conductivity (
) was evaluated. The composition dependence of S
was dominated by the change of
for both Fe
Mn
N and Fe
Co
N films. First-principles calculations were conducted for the transverse electric conductivity (
) and
of Fe
N and Fe
Co
N, and large
leading to large S
was predicted in Fe
Co
N.
Cao, T.*; Wei, D.*; Gong, W.; 川崎 卓郎; Harjo, S.; 他10名*
Materials Science and Engineering A, 940, p.148534_1 - 148534_16, 2025/09
The thermal stability of microstructure and mechanical performance is crucial for the industrial application of laser powder bed fusion (LPBF) superalloy components in gas turbines and jet engines. This work investigated the microstructural evolution and strengthening mechanism of LPBF Mar-M509 cobalt-based superalloy before and after thermal exposure at 1200 C using multi-scale microstructural characterization and in situ neutron diffraction tensile testing. The as-built Mar-M509 superalloy exhibited a heterogeneous microstructural features with coarse columnar and fine equiaxed grains, both containing dendritic and cellular substructures enriched with nanoscale carbides and high-density dislocations. The ultra high strength of the as-built sample was primarily attributed to dislocation-precipitation synergistic strengthening. After thermal exposure at 1200
C for 4 h, the dendritic and cellular substructures disappeared and the dislocation density decreased significantly. This study reveals the microstructural evolution and instability of LPBF Mar-M509 superalloy under high-temperature exposure and the impacts on mechanical properties, which provides critical support for the development of cobalt-based superalloys in high-temperature application fields.
Rizaal, M.; 中島 邦久; 鈴木 恵理子; 三輪 周平
Annals of Nuclear Energy, 218, p.111433_1 - 111433_10, 2025/08
被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)The release of iodine in a case of severe nuclear accident is directly linked to short-term radiological consequences. This concern raises issues in understanding the chemical forms of the transported iodine to devise proper accident management measures/strategies. In contributing to such efforts, this work presents experimental and theoretical approaches to defining the impact of molybdenum as a semi-volatile fission product toward iodine speciation in the gas phase. Given humid atmospheric conditions with different oxygen potentials, the interactions were revealed through the reaction products consisting of both gas and aerosols upon their transport and condensation in the temperature range of 1150-450 K. Through thermodynamic equilibrium calculations where new thermodynamic data of cesium molybdates have been incorporated, the experimental observation was reproduced, hence general interaction mechanism was proposed in this work.
田村 由起子*; 荒川 勝利*; 竹中 幹人*; 中西 洋平*; 藤波 想*; 柴田 基樹*; 山本 勝宏*; 宮田 登*; 山田 雅子*; 瀬戸 秀紀*; et al.
Polymer, 333, p.128662_1 - 128662_8, 2025/08
To investigate the relationship between the mechanical properties of silica-filled styrene-butadiene rubber (SBR) and the amount of bound rubber at the filler/rubber interface, the polymer matrix was extracted from silica-filled SBR using toluene at room temperature. In this study, this extraction process was reproduced by leaching a thermally annealed SBR layer deposited on a Si substrate in toluene at room temperature, where the adsorption layer of the SBR was grown at the interface with the substrate by thermal annealing. The SBR adsorption layer on the Si substrate has two-layer structures consisting of an inner and outer adsorption layers, which correspond to the tightly and loosely bound rubbers on the filler surface of the silica-filled SBR, respectively. For the sample annealed for less than 6 h, the outer adsorption layer, loosely bound to the substrate, was easily leached in toluene for 5 min, leaving only the inner adsorption layer on the substrate. For the samples annealed for more than 24 h, a large portion of the outer adsorption layer remained on top of the inner adsorption layer as a terrace structure. However, even for the sample annealed for 24 h, treating with toluene for 24 h completely leached the outer adsorption layer from the inner adsorption layer, although the inner adsorption layer remained on the substrate. It was found that the loosely bound rubber in the silica-filled SBR could be easily extracted from the filler surface, along with the free polymer chains in the polymer matrix during extraction with toluene at room temperature. In contrast, the tightly bound rubber was not leached by toluene at room temperature. This may be because the interfacial polymer chains within approximately 1 nm of the substrate surface were strongly constrained to the substrate, and even toluene molecules were excluded.
荒木 祥平; 會澤 栄寿; 村上 貴彦; 新垣 優; 多田 裕太; 神川 豊; 長谷川 健太; 吉川 智輝; 住谷 正人; 関 真和; et al.
Annals of Nuclear Energy, 217, p.111323_1 - 111323_8, 2025/07
被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)原子力機構では、臨界集合体STACYを均質溶液体系から非均質軽水減速体系へと更新した。STACY更新炉においても最大熱出力は200Wと定められており、熱出力校正は運転を行う上で重要である。熱出力測定においては、溶液系STACYで用いていたFPの分析による熱出力の評価が適応できなかったため、放射化法をベースとする実験データと数値計算を組み合わせて出力を評価する手法をSTACY更新炉の体系に適応し、測定を実施した。測定データを基に出力校正を実施した結果、校正後の指示値は放射化法による測定結果と3%以内で一致した。
望月 陽人; 松井 裕哉; 中山 雅; 坂本 亮*; 柴田 真仁*; 本島 貴之*; 城 まゆみ*
Case Studies in Construction Materials, 22, p.e04648_1 - e04648_20, 2025/07
被引用回数:0放射性廃棄物の地層処分で使用される低アルカリ性セメントは、長期にわたる処分場の操業期間中に大気中の二酸化炭素による炭酸化や地下水との接触によってその特性が変化する可能性がある。本研究では、フライアッシュとシリカヒュームを混合した低アルカリ性セメント(HFSC)を用いた吹付けコンクリートの化学的特性、微細構造ならびに輸送特性に対して大気中での炭酸化および地下水との接触が与える影響を、幌延の地下研究施設において16年間にわたり調査した。HFSC吹付けコンクリートの炭酸化領域と溶出領域のいずれにおいても、直径約300nm未満の細孔の毛細管空隙率が増加し、全空隙率は非変質領域よりも高くなった。これらの空隙構造の変化は、ケイ酸カルシウム水和物(C-S-H)の脱灰とエトリンガイトの分解に関連していると考えられる。このような変化は、OPC吹付けコンクリートの変質領域では軽微であったことから、本研究の調査条件下において、HFSC吹付けコンクリートは炭酸化や地下水溶出に対する抵抗性が相対的に低いことが示された。しかしながら、HFSCの透水係数は、地層処分に用いられる低pHセメントに求められる機能要件を満たす程度に低かった。
相馬 康孝; 小松 篤史; 加治 芳行; 山本 正弘*; 五十嵐 誉廣
Corrosion Science, 251, p.112897_1 - 112897_15, 2025/07
被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)高温水中(288C)におけるステンレス鋼のすき間内部への酸素侵入に関する実験およびモデリング研究を実施した。すき間内への酸素侵入の限界距離
は、酸素濃度、すき間幅、浸漬時間に関わらず、すき間開口部からの距離dがそれ以上の数値になる場合、主要表面酸化物組成が(ヘマタイト
マグネタイトに)変化する位置として定義することができた。その場測定により、
付近での電気伝導度の増加が確認され、これは酸素濃度差電池によるイオン濃縮を示した。
は、すき間幅、酸素濃度、浸漬時間の増加に伴って拡大した。モデル計算の結果、酸化膜の成長によってステンレス鋼金属のアノード溶解が抑制され、対応する酸素のカソード還元消費速度が低下することで、時間とともに酸素の侵入が進行することが示唆された。
Johansen, M. P.*; Gwynn, J. P.*; Carpenter, J. G.*; Charmasson, S.*; 森 愛理; Orr, B.*; Simon-Cornu, M.*; Osvath, I.*; McGinnity, P.*
Journal of Environmental Radioactivity, 287, p.107706_1 - 107706_8, 2025/07
被引用回数:0Radiological ingestion doses from eating seafood are regularly evaluated near coastal nuclear facilities, following accidents/events and frequently in national studies worldwide. However, a recent global review found that published seafood doses varied greatly depending on which radionuclides were selected for evaluation and that there has been a tendency to omit important radionuclides or focus on less significant ones. This indicates a need for clear guidance on which radionuclides to prioritise in such studies. Here, we use worldwide data for 16 key radionuclides contributing to typical background seafood ingestion dose. We account for the loss of radionuclides during cooking and the radioactive decay of the short-lived Po. Results indicate that for the typical world consumer, naturally-occurring radionuclides account for
99% of the total seafood ingestion dose, of which about 84% comes from
Po and 8% from
Pb. About 5% comes from
Ra, a far greater proportion than the more frequently-assessed
Ra (
1%). Other Th- and U-series radionuclides provide far lower contributions (0.07%-0.70%), while
C provides about 0.09%. In comparison, the contribution to total seafood ingestion dose from background anthropogenic radionuclides is
1%, with
Cs contributing most (0.08%) and
Sr,
Tc,
Ag and
Pu adding a further 0.05% together. These percentage contributions to dose can vary somewhat depending on consumption patterns (e.g., differing proportions of fish, bivalves, etc.). However,
Po is the dominant contributor irrespective of country-specific diets or restricted diet scenarios (fish-only, seaweed-only, etc.). Study results provide new guidance to improve the design, interpretation and communication of seafood ingestion dose assessments.
Gu, G. H.*; Jeong, S. G.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Cho, J.*; Kim, H. S.*; 他4名*
Journal of Materials Science & Technology, 223, p.308 - 324, 2025/07
被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties from cryogenic to room temperatures. At room temperature, deformation is dominated by dislocation slip, while at cryogenic temperatures (CTs), reduced stacking fault energy enhances strain hardening with twinning. This study uses in-situ neutron diffraction to analyze the temperature-dependent deformation behavior of Al(CoNiV)
, a dual-phase (FCC/BCC) medium-entropy alloy (MEA). At liquid nitrogen temperature (LNT), deformation twinning in the FCC matrix leads to additional strain hardening through the dynamic Hall-Petch effect, giving the appearance of improved strengthening at LNT. In contrast, BCC precipitates show dislocation slip at both 77 K and 298 K, with temperature-dependent lattice friction stress playing a significant role in strengthening. The study enhances understanding of deformation behaviors and provides insights for future alloy design.
Mao, W.*; Gong, W.; 川崎 卓郎; Gao, S.*; 伊東 達矢; 山下 享介*; Harjo, S.; Zhao, L.*; Wang, Q.*
Scripta Materialia, 264, p.116726_1 - 116726_6, 2025/07
被引用回数:0An ultrafine-grained 304 austenitic stainless steel exhibited pronounced serrated Luders deformation at 20 K, with stress and temperature oscillations reaching 200 MPa and 20 K. neutron diffraction and digital image correlation revealed discontinuous Luders band propagation and burst martensite formation. During deformation, austenite phase stress remained lower than at upper yielding, indicating elastic behavior. Notably, martensite phase stress stayed lower than austenite until fracture, likely due to stress relaxation from burst martensitic transformation at 20 K. The low martensite stress delayed brittle fracture until austenite plastically yielded during uniform deformation.
Lin, Z. M.*; Liu, B. X.*; Ming, K. S.*; 徐 平光; Yin, F. X.*; Zheng, S. J.*
Scripta Materialia, 263, p.116692_1 - 116692_7, 2025/07
被引用回数:0 パーセンタイル:0.00(Nanoscience & Nanotechnology)Complementary layer thickness effects on strength and plasticity in Q235 and SUS304 steels provide a novel strategy to realize high strength and high plasticity of heterogeneous Q235/SUS304 multilayered steel. In this work, the tensile deformation behaviors and fracture characteristics of vacuum hot-rolled Q235/SUS304 multilayered steel with various layer thicknesses ranging from 223 m to 5
m were deeply investigated. The tensile strength improved with the reduction of layer thickness, and the uniform elongation were first increasing and then decreasing with the decrease of layer thickness, and the peak value appeared at the layer thickness of 20
m. Interestingly, the fracture elongation forms a high plateau value within the 10
20
m range. Further analysis reveals that the severe strain localization in the brittle SUS304 thin layers is delayed by the ductile Q235 layers, which is mainly attributed to the different texture evolution and dislocation configuration characteristics during tensile deformation.
Park, M.-H.*; 柴田 曉伸*; Harjo, S.; 辻 伸泰*
Acta Materialia, 292, p.121061_1 - 121061_13, 2025/06
被引用回数:1Dual-phase (DP) steel, composed of soft ferrite and hard martensite, offers excellent strength-ductility balance and low cost. This study found that refining the DP microstructure enhanced both yield strength and strain hardening, improving strength and ductility. Digital image correlation (DIC) revealed strain localization in ferrite, but refinement reduced strain differences between ferrite and martensite, suppressing crack initiation. More ferrite/martensite interfaces promoted plasticity in martensite via enhanced deformation constraint. neutron diffraction showed martensite bore higher phase stress, which increased with refinement. By combining
-DIC and neutron data, individual stress-strain curves for ferrite and martensite were constructed for the first time, explaining the strength-ductility synergy through interphase constraint. These findings offer guidance for designing heterostructured materials to overcome the strength-ductility trade-off.
青山 高士; Choudhary, S.*; Pandaleon, A.*; Burns, J. T.*; Kokaly, M.*; Restis, J.*; Ross, J.*; Kelly, R. G.*
Corrosion, 81(6), p.609 - 621, 2025/06
This study presents a new test method for inducing controlled corrosion damage within simulated fastener holes of aluminum alloys, aimed at pretreating fatigue test specimens. The method involves insulating the outer surface while exposing the fastener hole surface to electrolytes containing 0.66 M NaCl + 0.1 M AlCl with varying concentrations of K
S
O
. The evolution of corrosion damage within the fastener hole was examined as a function of exposure duration, electrolyte composition, and volume, as well as the effect of galvanic coupling with a SS316 cathode. Results indicate that fissure depth increases with an increase in K
S
O
concentration but does not progress further after 24-48 hours of exposure in the chemical, or freely-corroding, exposure test. In contrast, galvanic coupling with a SS316 plate significantly accelerates corrosion, leading to much deeper fissures in a shorter time. The importance of electrolyte replenishment has been explored using electrochemical measurements, revealing the impact of evolving electrolyte chemistry. Beyond its application in fatigue specimen pretreatment, this method provides a simple yet effective approach for studying localized corrosion and evaluating mitigation strategies for fastener holes in aerospace structures.
杉田 裕; 大野 宏和; Beese, S.*; Pan, P.*; Kim, M.*; Lee, C.*; Jove-Colon, C.*; Lopez, C. M.*; Liang, S.-Y.*
Geomechanics for Energy and the Environment, 42, p.100668_1 - 100668_21, 2025/06
国際共同プロジェクトDECOVALEX-2023は、数値解析を使用してベントナイト系人工バリアの熱-水-応力(または熱-水)相互作用を研究するためのタスクDとして、幌延人工バリア性能確認試験を対象とした。このタスクは、モデル化のために、1つの実物大の原位置試験と、補完的な4つの室内試験が選択された。幌延人工バリア性能確認試験は、人工的な地下水注入と組み合わせた温度制御非等温の試験であり、加熱フェーズと冷却フェーズで構成されている。6つの研究チームが、さまざまなコンピューターコード、定式化、構成法則を使用して、熱-水-応力または熱-水(研究チームのアプローチによって異なる)数値解析を実行した。
Birkholzer, J. T.*; Graupner, B. J.*; Harrington, J.*; Jayne, R.*; Kolditz, O.*; Kuhlman, K. L.*; LaForce, T.*; Leone, R. C.*; Mariner, P. E.*; McDermott, C.*; et al.
Geomechanics for Energy and the Environment, 42, p.100685_1 - 100685_17, 2025/06
The DECOVALEX initiative is an international research collaboration (www.decovalex.org), initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. DECOVALEX stands for "DEvelopment of COupled Models and VALidation against EXperiments". DECOVALEX emphasizes joint analysis and comparative modeling of the complex perturbations and coupled processes in geologic repositories and how these impact long-term performance predictions. More than fifty research teams associated with 17 international DECOVALEX partner organizations participated in the comparative evaluation of eight modeling tasks covering a wide range of spatial and temporal scales, geological formations, and coupled processes. This Virtual Special Issue on DECOVALEX-2023 provides an in-depth overview of these collaborative research efforts and how these have advanced the state-of-the-art of understanding and modeling coupled THMC processes. While primarily focused on radioactive waste, much of the work included here has wider application to many geoengineering topics.