Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
今野 力; 大山 幸夫; 池田 裕二郎; 山口 誠哉; 津田 孝一; 小迫 和明*; 前川 洋; 中川 正幸; 森 貴正; 中村 知夫; et al.
Fusion Technology, 28(2), p.273 - 295, 1995/09
核融合炉ブランケット中性子工学に関する原研/米国DOE共同研究の第2段階として、閉鎖ブランケット体系を用いた中性子工学実験を行った。基本となる実験体系は、ブランケット試験領域へ入射する中性子スペクトルを実際の核融合炉のものに近づけるため、D-T中性子源とブランケット試験領域である酸化リチウム層を炭酸リチウム層で囲んだもので、試験領域内のトリチウム生成率、放射化反応率、中性子スペクトルを測定した。更に、基本体系の試験領域及びその対向側へベリリウムの中性子増倍層を設置した5体系についても実験を行い、基本体系の実験データとの比較から、ベリリウムでの中性子増倍、反射の効果を明らかにした。JENDL-3/PR1,PR2を用いたDOT3.5によって実験の解析を行い、ベリリウム層の近傍を除いて、10%以内で実験を再現できることがわかった。
大山 幸夫; 今野 力; 池田 裕二郎; 前川 藤夫; 前川 洋; 山口 誠哉; 津田 孝一; 中村 知夫; M.A.Abdou*; Bennett, E. F.*; et al.
Fusion Technology, 28(1), p.56 - 73, 1995/08
加速器型14MeV中性子源を用いた工学指向の中性子工学実験体系の考え方を述べる。原研と米国エネルギー省との協力計画で行ったこの実験は幾何学的及び物質的な配置についての考察に基づいて計画した。これらの実験体系の核特性を核融合炉モデルのものと比較し、これらの実験体系とその材料の製作法について述べた。また、これらの実験のためにトリチウム生成率などの核パラメータを測定する種々の技術が開発または導入されたが、これらについて実験誤差などの特徴をお互いに比較検討した。
大山 幸夫; 今野 力; 池田 裕二郎; 山口 誠哉; 津田 孝一; 小迫 和明*; 前川 洋; 中川 正幸; 森 貴正; 中村 知夫; et al.
Fusion Technology, 28(1), p.216 - 235, 1995/08
核融合炉ブランケット中性子工学に関する原研/米国DOEとの協力計画のフェーズIICとして2種類の非均質ブランケットについて中性子工学実験を行った。実験体系は炭酸リチウムで中性子源を取囲んだ先のフェーズIIA実験と同じ形状である。典型的な非均質体系としてベリリウム多層体系と水冷却体系を選んだ。これらは物質境界で大きな中性子束勾配やスペクトル変化を与え、そこでの計算精度や測定法を調べることが目的である。測定ではボイド効果は低エネルギーに感度のある検出器に対し非均質な領域では無視できないことがわかった。また、ベリリウムや水の近傍で大きなトリチウム生成の増加が見られ、モンテカルロ計算はそのような境界でも良い一致を示した。
大山 幸夫; 今野 力; 池田 裕二郎; 前川 藤夫; 前川 洋; 山口 誠哉; 津田 孝一; 中村 知夫; M.A.Abdou*; Bennett, E. F.*; et al.
Fusion Engineering and Design, 28, p.716 - 723, 1995/00
被引用回数:5 パーセンタイル:49.26(Nuclear Science & Technology)核融合ブランケット中性子工学についての日米共同実験を通じて開発または応用された測定手法について述べ、評価を行なう。これらはトリチウム生成率、中性子スペクトル、反応率、ガンマ発熱である。最も重要な、トリチウム生成率には6つの方法、即ち、2つのオンライン法と3つの液体シンチレーション法そして一つのTLD法が開発・適用された。スペクトルではNE213とガス比例計数管、反応率では放射化反応の組合せが選ばれ、ガンマ発熱では、TLD内挿法とNE213による荷重関数法が適用された。これらの測定誤差はトリチウム生成率で3-5%、スペクトルで5-10%、反応率で3-6%、そしてガンマ発熱で10-20%と見積られた。核融合炉装置での実験適用性では、放射化箔法を除いて、高温高磁場環境に直ちに適用できるものはなく、新しい測定技術の開発が必要である。
中川 正幸; 小迫 和明*; 森 貴正; 大山 幸夫; 今野 力; 池田 裕二郎; 山口 誠哉*; 津田 孝一*; 前川 洋; 中村 知夫*; et al.
JAERI-M 92-183, 106 Pages, 1992/12
核融合中性子工学に関する原研/米国エネルギー省協力研究のフェイズIIC実験ではいくつかのブランケット設計にみられる実際的な非均質性をもつブランケットについての積分実験と計算解析が行われた。二つの配置、即ち酸化リチウムとベリリウムの多層系(BEO)および水冷却チャンネル(WCC)体系が採用された。実験の目的は非均質構造周辺てのトリチウム生成率等の予測精度を調べることで、MORSE-DDとMCNPコードが両体系に、DOT3.5/GRTONCLとDOT5.1/RUFFコードがWCC体系に適用された。BEO体系実験では領域別トリチウム生成率の測定値に対して、計算との比(C/E)が原研が0.95-1.05米国が0.98-0.9であり、これまでの実験の傾向と一致した。WCC体系実験ではリチウム6によるトリチウム生成率のC/Eが水冷却チャンネルの周辺で著しく変化した。NE213によって求めたリチウム7によるトリチウム生成率では米国が20-25%大きく、用いた両国の核データの差に原因がある。
大山 幸夫; 今野 力; 池田 裕二郎; 山口 誠哉*; 津田 孝一*; 前川 洋; 中村 知夫*; 小迫 和明*; 中川 正幸; 森 貴正; et al.
JAERI-M 92-182, 151 Pages, 1992/12
原研と米国エネルギー省との間の協定に基づく核融合ブランケット中性子工学に関する協力計画のフェイズIICの実験として2種類の非均質ブランケットについて中性子工学実験を実施した。実験配置はフェイズIIA実験と同様に中性子源を炭酸リチウムの包囲層で囲んだ閉鎖体系を用いた。選択した非均質体系はベリリウム多層体系と水冷却チャネルを含む体系である。前者はベリリウムと酸化リチウム層を交互に重ねた体系で、後者は酸化リチウム内に三つの冷却チャンネルを設けた体系である。これらの体系は中性子束の急激な変化を物質境界で発生し、そこでの計算精度と測定手法がこの実験の主要点である。測定はこれまでの実験と同様トリチウム生成率等の核パラメータに対して行われた。本報告書では核融合炉核設計の計算手法と核データの試験のためのベンチマークデータとして用いるに充分な実験の詳細と結果を述べる。
大山 幸夫; 山口 誠哉; 津田 孝一; 池田 裕二郎; 今野 力; 前川 洋; 中村 知夫; K.G.Porges*; Bennett, E. F.*; R.F.Mattas*
JAERI-M 89-215, 208 Pages, 1989/12
原研/米国エネルギ省との間ですすめている核融合炉ブランケット中性子工学に関する協力計画のフェイズIIAおよびIIB実験を行った。酸化リチウムを用いたブランケット模擬領域への入射中性子スペクトルを実際の核融合炉のものに近似させるため、このフェイズIIシリーズでは炭酸リチウムの包囲層を設けた閉鎖体系としている。特にIIAとIIBの実験では、ブランケット内に置かれるBe中性子増倍層の配置の効果を中心に調べた。測定は、トリチウム生成率、中性子スペクトル、放射化反応率等について行われた。本報告では、第1部に実験条件、体系、装置及び測定法と各測定結果を詳述し、第2部に計算解析を行うのに必要となる体系寸法、物質密度及び実験値の数値データを集め、設計計算システムの精度評価を行うためのベンチマークデータとしての利用を可能とした。
大山 幸夫; 山口 誠哉; 津田 孝一; 池田 裕二郎; 今野 力; 前川 洋; 中村 知夫; K.G.Porges*; Bennett, E. F.*; R.F.Mattas*
Fusion Technology, 15(2), p.1293 - 1298, 1989/03
原研と米国DOEとの核融合ブランケット中性子工学に関する協力計画に基づいて、PhaseIIB体系による実験を行った。本実験はPhaseIIシリーズ実験の一つで、試験ブランケット領域のみにベリリウムを配したIIA体系対し、中性子源をとりかこむ炭酸リチウム領域内面にもベリリウムを配して反射による入射スペクトルの変化の効果を比較した。
大山 幸夫; 津田 孝一; 山口 誠哉; 池田 裕二郎; 今野 力; 前川 洋; 中村 知夫; K.G.Porges*; Bennett, E. F.*
Fusion Engineering and Design, 9, p.303 - 313, 1989/00
日米共同実験のフェーズIIの第1期としてLiO/Beブランケットでの種々の核的パラメータを閉鎖体系で測定した。本計画は核融合炉で必要なトリチウム増倍率(TBR)などの予測精度を調べることを目的としている。
山口 誠哉; 前川 洋; 小迫 和明*; 中村 知夫; K.G.Porges*
Fusion Engineering and Design, 10, p.163 - 167, 1989/00
被引用回数:7 パーセンタイル:63.69(Nuclear Science & Technology)核融合炉ブランケット規模体系中のガンマ線発熱率分布を熱蛍光線量計(TLD)を用いて測定した。測定には異なる実効原子番号を持つ4種類のTLDを用い、内挿法を適用した。
前川 洋; 中村 知夫; 大山 幸夫; 池田 裕二郎; 小方 厚; 津田 孝一; 大石 晃嗣*; K.G.Porges*; E.F.Bennett*; T.J.Yule*; et al.
Transactions of the American Nuclear Society, 52, p.109 - 110, 1986/00
原研/米国DOE協同研計画の第1段階実験がFNSを用いて実施された。ブランケット模擬体系はLiOをトリチウム増殖材としたもので、FNSの第1第2ターゲット空間の壁に備えられた貫通孔に設置、回転ターゲットからのD-T中性子を利用し、実験した。実験では基礎となるRNTからの中性子源特性として、エネルギースペクトルや角度分布を測定した。次いで、LiOのみの基準系、種々の第1壁を模擬したFW系、Beによる中性子増信効果を調べるBe系で、実験が行なわれた。最も重要な測定項目であるトリチウム生成率(TPR)はオンライン法として、LiについてはLiグラスシンチレータ、Liに対してはNE213シンチレータで、また、積分法として、LiOペレット及びLiメタルサンプルを用いた液体シンチレーション法で測定した。放射化箔による反応率やNE213及びPRCによるスペクトルも測定した。