Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Nagaoka, Mika; Koike, Yuko; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.
JAEA-Review 2023-052, 118 Pages, 2024/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2022. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Koike, Yuko; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; Nagai, Shinji; et al.
JAEA-Review 2023-046, 164 Pages, 2024/03
The Nuclear Fuel Cycle Engineering Laboratories conducts environmental radiation monitoring around the reprocessing plant in accordance with the "Safety Regulations for Reprocessing Plant of JAEA, Part IV: Environmental Monitoring". This report summarizes the results of environmental radiation monitoring conducted during the period from April 2022 to March 2023 and the results of dose calculations for the surrounding public due to the release of radioactive materials into the atmosphere and ocean. In the results of the above environmental radiation monitoring, many items were affected by radioactive materials emitted from the accident at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, Incorporated (changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016), which occurred in March 2011. Also included as appendices are an overview of the environmental monitoring plan, an overview of measurement methods, measurement results and their changes over time, meteorological statistics results, radioactive waste release status, and an evaluation of the data which deviated of the normal range.
Nakada, Akira; Kanai, Katsuta; Kokubun, Yuji; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei*; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; et al.
JAEA-Review 2022-079, 116 Pages, 2023/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2021. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Nakano, Masanao; Nakada, Akira; Kanai, Katsuta; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei; Kubota, Tomohiro; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.
JAEA-Review 2021-040, 118 Pages, 2021/12
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2020. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Koike, Yuko; Yamada, Ryohei; Nagaoka, Mika; Nakano, Masanao; Ono, Yosuke; Suitsu, Yuichi
JAEA-Technology 2021-011, 39 Pages, 2021/08
In the Analyzed Liquid Treatment Facility of Japan Nuclear Fuel Co., Ltd. (JNFL) MOX Fuel Fabrication Plant (J-MOX), the interfere by salts with the analysis of gross alpha activity concentration analysis will be caused during the treatment process. Therefore, JNFL devised the desalting method using a solid-phase extraction chromatography. Japan Atomic Energy Agency carried out the experimental study to confirm the validity of this desalting method for the treatment liquid based on the contract with JNFL. This study consists of three experiments as follows: Step 1 - Selection of an optical solid-phase extraction agent, Step 2 - Evaluation of variation optical solid-phase extraction agent, and Step 3 - Application of the imitation liquid waste. The result of Step 1 determined the solid-phase extraction agent (InertSep ME-2) and the optimum condition (aspiration method by manifold (about 5-10 mL/min), 3M nitric acid as eluent, pH: 5, and no adjustment of ionic valence). Then, the result of Step 2 and 3 made sure the validation of this method by obtaining over 70% recovery for the imitation liquid waste sample of the Analyzed Liquid Treatment Facility of J-MOX.
Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei; Kubota, Tomohiro; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.
JAEA-Review 2020-070, 120 Pages, 2021/02
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2019. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.
JAEA-Review 2019-045, 120 Pages, 2020/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2018. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; et al.
JAEA-Review 2018-028, 120 Pages, 2019/02
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2017. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Nakano, Masanao; Fujita, Hiroki; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.
JAEA-Review 2017-037, 119 Pages, 2018/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2016. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Nishimura, Tomohiro; Koike, Yuko; et al.
JAEA-Review 2017-028, 177 Pages, 2018/01
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Nishiki, Naomi*; Metoki, Naoto; Soyama, Kazuhiko; Koike, Yoshihiro; Suzuki, Junichi; Fujiwara, Satoru; Haga, Yuko*; Koizumi, Satoshi
Journal of the Physical Society of Japan, Vol.70, Supplement A, p.480 - 482, 2001/05
no abstracts in English
Ayame, Junko; Maeda, Eita; Koike, Yuko; Mitsumoto, Rika; Nakano, Minako; Uehara, Shieru
no journal, ,
Atomic Energy Society of Japan for 2018 Oral Presentation the winning a prize contents of "excellent active prize" in 2016 Fall Meeting. We were awarded the Outstanding Active Award of Social and Environmental Division, Atomic Energy Society of Japan in the 2018 Annual Meeting. We will present the award lecture at the Planning Session of Social and Environmental Division in the 2018 Fall Meeting.
Koike, Yuko; Nagaoka, Mika; Fujita, Hiroki; Nakano, Masanao
no journal, ,
no abstracts in English
Hosokawa, Tomoaki*; Fujiwara, Hideki*; Kamoshida, Shuichi*; Anzai, Kiyoshi*; Nakano, Masanao; Koike, Yuko; Yamada, Ryohei; Nagaoka, Mika
no journal, ,
no abstracts in English
Nakano, Masanao; Koike, Yuko; Yamada, Ryohei; Nagaoka, Mika; Hosokawa, Tomoaki*; Fujiwara, Hideki*; Kamoshida, Shuichi*; Anzai, Kiyoshi*
no journal, ,
no abstracts in English
Uemura, Takero; Fujita, Hiroki; Koike, Yuko; Kubota, Tomohiro; Koarashi, Jun
no journal, ,
To establish a measurement method of surface contamination density of tritium on wiping smear paper using a liquid scintillation counter, the influence of a smear sample in a vial on the counting was studied in this experiment. Measurement vials without smear paper were utilized for making quenching curve for tritiated water and acetone was used as a quencher of optical efficiency. After making the quenching curve, the vials of tritiated water with smear papers were measured and then the efficiency and the quenching index were compared with the quenching curve. As a result, no influence of smear paper on the liquid scintillation counting was found. In this presentation, the above results and the other basic data related to the measurement will be explained.