Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Takahashi, Hiroyuki*
Journal of Nuclear Science and Technology, 59(8), p.983 - 992, 2022/08
Times Cited Count:1 Percentile:18.18(Nuclear Science & Technology)Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*
Nuclear Instruments and Methods in Physics Research A, 1010, p.165544_1 - 165544_9, 2021/09
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)The number of nuclear facilities being decommissioned has been increasing worldwide, in particular following the accident of the Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station in 2011. In these nuclear facilities, proper management of radioactive materials is required. Then, A -ray spectrometer with four segmentations using small volume CeBr scintillators with a dimension of was developed. The four scintillators were coupled to a multi-anode photomultiplier tube specific to intense radiation fields. We performed the -ray exposure study under Cs and Co radiation fields. Under the Cs radiation field, the relative energy resolution at 1375 mSv/h was the relative energy resolution at 1375 mSv/h was 9.20.05%, 8.00.08%, 8.00.03%, and 9.00.04% for the four channels, respectively.
Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 988, p.164900_1 - 164900_8, 2021/02
Times Cited Count:12 Percentile:84.34(Instruments & Instrumentation)An increasing number of nuclear facilities have been decommissioned worldwide following the 2011 accident of the TEPCO' Fukushima Daiichi Nuclear Power Station. During the decommissioning, radioactive materials have to be retrieved under proper management. In this study, a small cubic CeBr spectrometer with dimensions of 5 mm 5 mm 5 mm was manufactured to perform -ray spectroscopy under intense -ray fields. Furthermore, thanks to a fast digital process unit and a customized photomultiplier, the device could perform -ray spectroscopy at dose rates of over 1 Sv/h. The energy resolution (FWHM) at 662 keV ranged from 4.4% at 22 mSv/h to 5.2% at 1407 mSv/h for a Cs radiation field. Correspondingly, at 1333 keV, it ranged from 3.1% at 26 mSv/h to 4.2% at 2221 mSv/h for a Co radiation field, which suggested to realize -ray assessment of Cs, Cs, Co, and Eu at dose rates of over 1 Sv/h.
Isozaki, Naohiko; Morimoto, Kenji; Furukawa, Ryuichi; Tsuboi, Masatoshi; Yada, Yuji; Miyoshi, Ryuta; Uchida, Toyomi; Ikezawa, Kazumi*; Kurosawa, Kenji*
Nihon Hozen Gakkai Dai-16-Kai Gakujutsu Koenkai Yoshishu, p.225 - 228, 2019/07
Highly active liquid waste, which is generated by the reprocessing of spent nuclear fuel, is stored in storage tank of Tokai Reprocessing Plant until it is vitrified. The waste solution in the tank is periodically agitated to avoid the precipitation of insoluble residues during the storage. Three way valves and ball valves have been located at the tank for agitation. Radiation dose rate at the valve location is high and operator's radiation exposure become a problem. Therefore, measures to reduce radiation exposure are performed and reported in this presentation.
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Nishimura, Tomohiro; Koike, Yuko; et al.
JAEA-Review 2017-028, 177 Pages, 2018/01
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Shikaze, Yoshiaki; Nishizawa, Yukiyasu; Sanada, Yukihisa; Torii, Tatsuo; Jiang, J.*; Shimazoe, Kenji*; Takahashi, Hiroyuki*; Yoshino, Masao*; Ito, Shigeki*; Endo, Takanori*; et al.
Journal of Nuclear Science and Technology, 53(12), p.1907 - 1918, 2016/12
Times Cited Count:39 Percentile:96.29(Nuclear Science & Technology)The Compton camera was improved for use with the unmanned helicopter. Increase of the scintillator array from 44 to 88 and expanse of the distance between the two layers contributed to the improvements of detection efficiency and angular resolution, respectively. Measurements were performed over the riverbed of the Ukedo river of Namie town in Fukushima Prefecture. By programming of flight path and speed, the areas of 65 m 60 m and 65 m 180 m were measured during about 20 and 30 minutes, respectively. By the analysis the air dose rate maps at 1 m height were obtained precisely with the angular resolution corresponding to the position resolution of about 10 m from 10 m height. Hovering flights were executed over the hot spot areas for 10-20 minutes at 5-20 m height. By using the reconstruction software the -ray images including the hot spots were obtained with the angular resolution same as that evaluated in the laboratory (about 10).
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.
Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06
Times Cited Count:189 Percentile:99.42(Physics, Nuclear)Transverse momentum distributions and yields for , and in collisions at = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different collisions. We also present the scaling properties such as and scaling and discuss the mechanism of the particle production in collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.
Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04
Times Cited Count:10 Percentile:52.22(Physics, Nuclear)Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to collisions.
Sagawa, Naoki; Yamazaki, Takumi; Kurosawa, Shigeyuki*; Izaki, Kenji; Mizuniwa, Harumi; Takasaki, Koji
JAEA-Technology 2010-051, 35 Pages, 2011/03
The image analysis method using a imaging plate (IP) is recent technique, and this method can get the information of radioactivity distribution by the unit of Photo Simulated Luminescence (PSL). We have investigated the PSL images obtained by measuring some plutonium samples which are radiation protection samples in order to apply imaging plate to the radiation protection at the MOX fuel facility. Plutonium spots were extracted from the PSL image extracted by the threshold, in which about 99% of the back ground was excluded, and identified by the additional requirement that the spot size is more than 40 pixels. The average background is subtracted from PSL strength of the spot area identified as Pu, and the radioactivity of the Pu spot was evaluated by multiplying the conversion calculation that is in consideration of fading.
Ebisawa, Hiroyuki; Hanakawa, Hiroki; Asano, Norikazu; Kusunoki, Hidehiko; Yanai, Tomohiro; Sato, Shinichi; Miyauchi, Masaru; Oto, Tsutomu; Kimura, Tadashi; Kawamata, Takanori; et al.
JAEA-Technology 2009-030, 165 Pages, 2009/07
The condition of facilities and machinery used continuously were investigated before the renewal work of JMTR on FY 2007. The subjects of investigation were reactor building, primary cooling system tanks, secondary cooling system piping and tower, emergency generator and so on. As the result, it was confirmed that some facilities and machinery were necessary to repair and others were used continuously for long term by maintaining on the long-term maintenance plan. JMTR is planed to renew by the result of this investigation.
Umeda, Koji; Oi, Takao; Osawa, Hideaki; Oyama, Takuya; Oda, Chie; Kamei, Gento; Kuji, Masayoshi*; Kurosawa, Hideki; Kobayashi, Yasushi; Sasaki, Yasuo; et al.
JAEA-Review 2007-050, 82 Pages, 2007/12
This report shows the annual report which shows the summarized results and topic outline of each project on geological disposal technology in the fiscal year of 2006.
Higuchi, Hidekazu; Osugi, Takeshi; Nakashio, Nobuyuki; Momma, Toshiyuki; Tohei, Toshio; Ishikawa, Joji; Iseda, Hirokatsu; Mitsuda, Motoyuki; Ishihara, Keisuke; Sudo, Tomoyuki; et al.
JAEA-Technology 2007-038, 189 Pages, 2007/07
The Advanced Volume Reduction Facilities (AVRF) is constructed to manufacture the waste packages of radioactive waste for disposal in the Nuclear Science Research Institute of the Japan Atomic Energy Agency. The AVRF is constituted from two facilities. The one is the Waste Size Reduction and Storage Facility (WSRSF) which is for reducing waste size, sorting into each material and storing the waste package. The other is the Waste Volume Reduction Facility (WVRF) which is for manufacturing the waste package by volume reducing treatment and stabilizing treatment. WVRF has an induction melting furnace, a plasma melting furnace, an incinerator, and a super compactor for treatment. In this report, we summarized about the basic concept of constructing AVRF, the constitution of facilities, the specifications of machineries and the state of trial operation until March of 2006.
Kaburagi, Masaaki; Takahashi, Hiroyuki*; Shimazoe, Kenji*; Kurosawa, Tadahiro*; Kato, Masahiro*
no journal, ,
no abstracts in English
Takahashi, Kenji; Yamaguchi, Toshihiko; Onizawa, Takahiro; Kurosawa, Norifumi; Shiina, Akira; Tagawa, Akihiro; Ibaki, Shoji
no journal, ,
no abstracts in English
Shiina, Akira; Yamaguchi, Toshihiko; Onizawa, Takahiro; Kurosawa, Norifumi; Takahashi, Kenji; Ibaki, Shoji
no journal, ,
no abstracts in English
Asano, Norikazu; Kurosawa, Akihiko; Yanai, Tomohiro; Watahiki, Shunsuke; Kameyama, Yasuhiko; Onoue, Ryuji; Tobita, Kenji; Fukasaku, Akitomi
no journal, ,
no abstracts in English
Shikaze, Yoshiaki; Torii, Tatsuo; Shimazoe, Kenji*; Jiang, J.*; Takahashi, Hiroyuki*; Kurosawa, Shunsuke*; Kamada, Kei*; Yoshikawa, Akira*; Yoshino, Masao*; Ito, Shigeki*; et al.
no journal, ,
no abstracts in English
Shikaze, Yoshiaki; Torii, Tatsuo; Nishizawa, Yukiyasu; Yoshida, Mami*; Shimazoe, Kenji*; Jiang, J.*; Takahashi, Hiroyuki*; Kurosawa, Shunsuke*; Kamada, Kei*; Yoshikawa, Akira*; et al.
no journal, ,
no abstracts in English
Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*; et al.
no journal, ,
The retrieval of nuclear fuel debris will be started at Tokyo Electrical Power Company Holdings' Fukushima Daiichi Nuclear Power Station. Because of high dose-rate fields on the surface of nuclear fuel debris and these inhomogeneous elements, non-destructive analysis is required during the retrieval. Here, it is presented that a -ray spectrometry system specific to high dose-rate fields was developed and its performance under intense -ray fields was evaluated for the retrieval of nuclear fuel debris.
Kaburagi, Masaaki; Shimazoe, Kenji*; Kurosawa, Tadahiro*; Kato, Masahiro*; Takahashi, Hiroyuki*
no journal, ,
no abstracts in English
Ishii, Tatsuya*; Sueki, Keisuke*; Matsuo, Kazuki*; Kurosawa, Masanori*; Satou, Yukihiko; Kobata, Masaaki; Fukuda, Tatsuo; Yoshii, Kenji; Tanida, Hajime; Okane, Tetsuo; et al.
no journal, ,
Radioactive particles were released into the environment by the accident of Fukushima Daiichi Nuclear Power Plant (FDNPP). They have information to understand the inside of the reactor during the accident. Now, nobody knows the generation process of radioactive particles. In this study, we analyzed (1) elements of particles' cross section with SEM-EDS to reveal what is the material and (2) chemical states of elements on particles' surface with HAXPES. (1) Radioactive particles are composed of the two parts. One is the basic material and the other is the heavy elemental materials. We considered the basic material was soda-lime glass and the heavy elemental materials included lead glass. (2) HAXPES brought out that the chemical states of Cs on particles, surface was different in the Na-poor areas and the Na-rich areas. In the Na-poor areas, the chemical state of Cs showed CsFeSiO mainly, but zero valence partly. In the Na-rich areas, the chemical state of Cs couldn't be identified. For above analyses, we can reveal the generation process of radioactive particles.