Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
木津 要; 村上 陽之; 土屋 勝彦; 吉田 清; 野元 一宏*; 今井 良夫*; 湊 恒明*; 尾花 哲浩*; 濱口 真司*; 高畑 一也*
IEEE Transactions on Applied Superconductivity, 23(3), p.4200104_1 - 4200104_4, 2013/06
被引用回数:23 パーセンタイル:72.32(Engineering, Electrical & Electronic)JT-60SAの中心ソレノイド(CS)の最大経験磁場、電流値、電圧は8.9T, 20kA, 10kVである。そのため、高磁場・高電流密度のNbSn導体を開発した。CSの外形と高さは2m, 1.6mである。幾つかの構成部品を新規に開発し、試験を行った。供給磁束を最大化するためには、巻線の直径をできるだけ大きくする必要がある。そのために、ジョイントの空間を最小化できるバットタイプのジョイントを開発した。DGEBAエポキシを用いた絶縁は、100kGyの
線照射においても十分な強度を有していることが示された。4
4に導体を積み重ねたサンプルに運転時の2倍の応力を運転回数与えた後に絶縁試験を行ったところ、21kVより大きな絶縁耐力があった。これらの結果より、CS実機製作が開始できる。
村上 陽之; 木津 要; 土屋 勝彦; 吉田 清; 山内 邦仁; 島田 勝弘; 寺門 恒久; 松川 誠; 長谷川 満*; 湊 恒明*; et al.
IEEE Transactions on Applied Superconductivity, 22(3), p.9501405_1 - 9501405_5, 2012/06
被引用回数:4 パーセンタイル:29.81(Engineering, Electrical & Electronic)超伝導コイルの開発において、ターン間絶縁の耐電圧特性は重要な設計パラメータである。しかし実機コイルのターン間電圧は、電源の電圧変動やコイル内の共振現象により、理想的に電圧が分布した場合に比べ局所的にターン間電圧が高くなる危険性が指摘されている。そこで電源の電圧変動を評価するためJT-60SAと同等の大型電源であるJT-60Uの電源電圧測定を実施した。また、コイル内の共振現象を把握するため、EF4ダミーパンケーキを用いた共振特性試験及び数値解析によりEFコイルの共振特性を評価した。これらの結果、実際のターン間電圧は理想的な電圧分布から大きく外れないことが確認できた。
長谷川 満*; 堀井 弘幸*; 野元 一宏*; 今井 良夫*; 村井 隆*; 湊 恒明*; 久野 和雄*; 土屋 勝彦; 村上 陽之; 木津 要; et al.
Proceedings of 24th International Cryogenic Engineering Conference (ICEC 24) and International Cryogenic Materials Conference 2012 (ICMC 2012) (CD-ROM), p.571 - 574, 2012/05
JT-60SA装置の超伝導コイルには、18個のトロイダル磁場(TF)コイルと、4つのモジュールから構成される中心ソレノイド(CS)、そして6つの円形であり、さまざまな直径(4.5ないし11m)を持つプラズマ平衡磁場(EF)コイルがあり、日欧協力して製造が進めており、これらのうちCSとEFコイルは日本が担当となっている。このEFコイルのうち、TFコイルの下側に設置されるEF4,5,6の3つのコイルは、TFコイル完成前にJT-60SA本体が設置される箇所に配置されている必要があるため、特に製造が急がれる。2011年より、超伝導コイルの一号機として、EF4コイルの巻線製造が開始された。そして2012年4月、巻線が完成し日本原子力研究開発機構那珂研究所に納入した。最終的に、本コイルの電流中心のトレランスは、要求設計スペックの約十分の一に押さえ込むことが確認できた。本講演では、巻線製造に使用された各機器類の諸元及び工程について述べるとともに、トレランスの評価結果について報告する。
土屋 勝彦; 木津 要; 村上 陽之; 吉田 清; 村井 隆*; 岡田 泰之*; 野元 一宏*; 湊 恒明*
no journal, ,
JT-60SA装置におけるポロイダル磁場を生成する超伝導コイルシステムのうち、中心ソレノイドは最大磁場8.9Tを20kAの電流で発生させるため、大きな電磁力を生じる。そのため、本コイル巻線部のインレット部や終端(巻き止め)部を設計するにあたっては、この電磁力に耐えることはもちろんのこと、特に巻線製造後に直接加工を施すインレットについては、その加工時に超伝導線を傷つけないようにする構造を持つことが要求される。この対策により開口部面積が大きくなるため、インレットキャップに電磁力を持たせることで、機械的強度を担保する設計とした。また、インレットキャップに空ける冷媒溝構造についても、加工が可能となるよう設計を進めた。本講演では、これらの形状を決定するまでのプロセスや構造の機械的成立性について述べる。
村上 陽之; 木津 要; 土屋 勝彦; 吉田 清; 長谷川 満*; 湊 恒明*; 佐古 勝久*
no journal, ,
JT-60SA装置の平衡磁場(EF)コイルは、NbTi素線を用いたケーブル・イン・コンジット導体を用い、複数のパンケーキ巻きコイルを接続し製作される。超伝導コイルを問題なく動作させるためには導体間を短絡させないよう、導体間の絶縁を正常に保つ必要がある。そのため、導体間の最大電圧及び絶縁物の耐電圧特性は極めて重要な設計パラメータである。しかし、印加電圧の周波数がコイル内に存在する共振周波数に近い場合、局所的に導体間電圧が高くなる危険性が指摘されている。そこで、銅ダミー導体により製作されたダミーパンケーキを用いて導体間の電圧分布測定試験を実施した。ダミーパンケーキは寸法や絶縁構成が実機と同等であるため、実機の共振現象を評価できるものと考えられる。試験の結果、実際に用いられる電源が持つ周波数領域(最大数kHz)において、共振現象は観測されなかった。以上より、実機運転においてEFコイルの導体間電圧が局所的に高まらないことが確かめられた。