Refine your search:     
Report No.
 - 
Search Results: Records 1-19 displayed on this page of 19
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Safety measures in the melting facilities of The Advanced Volume Reduction Facilities; Document collection of discussion meetings related to melting facilities

Iketani, Shotaro; Yokobori, Tomohiko; Ishikawa, Joji; Yasuhara, Toshiyuki*; Kozawa, Toshiyuki*; Takaizumi, Hirohide*; Momma, Takeshi*; Kurosawa, Shingo*; Iseda, Hirokatsu; Kishimoto, Katsumi; et al.

JAEA-Review 2018-016, 46 Pages, 2018/12

JAEA-Review-2018-016.pdf:12.79MB

Japan Atomic Energy Agency (JAEA) adopts melting process for the waste processing and packaging method of radioactive miscellaneous solid waste in NSRI because melting process is effective in radioactivity evaluation, volume reduction, and stabilization treatment. Metal melting processing facilities, Incinerator, and Nonmetal melting processing facilities (hereinafter referred to as melting process facilities) have taken lots of safety measures, including measures for preventing the recurrence of the fire accidents. To exchange opinions and discuss the validity of these measures and so on with internal personnel and external experts, "Discussions on Melting Process Facilities" was held. As a document collection, this paper summarizes presentation materials of discussion meetings. Presentation materials describe "Outline of AVRF", "Safety measures in the melting facilities in WVRF", "Operation management of the melting facilities in WVRF", "Comparison of the past accident cases between facilities in and outside Japan and WVRF", and "Introduction of past accident cases and safety measures in other facilities from each committee".

Journal Articles

Molecular gyrotops with a five-membered heteroaromatic ring; Synthesis, temperature-dependent orientation of dipolar rotors inside the crystal, and its birefringence change

Masuda, Toshiyuki*; Arase, Junko*; Inagaki, Yusuke*; Kawahara, Masatoshi*; Yamaguchi, Kentaro*; Ohara, Takashi; Nakao, Akiko*; Momma, Hiroyuki*; Kwon, E.*; Setaka, Wataru*

Crystal Growth & Design, 16(8), p.4392 - 4401, 2016/08

 Times Cited Count:24 Percentile:90.91(Chemistry, Multidisciplinary)

Journal Articles

The Verification tests of the melting conditions for homogenization of metallic LLW at the JAEA

Nakashio, Nobuyuki; Osugi, Takeshi; Iseda, Hirokatsu; Tohei, Toshio; Sudo, Tomoyuki; Ishikawa, Joji; Mitsuda, Motoyuki; Yokobori, Tomohiko; Kozawa, Kazushige; Momma, Toshiyuki; et al.

Journal of Nuclear Science and Technology, 53(1), p.139 - 145, 2016/01

 Times Cited Count:1 Percentile:14.27(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Improvement for the stable operation in the super compactor

Sudo, Tomoyuki; Mimura, Ryuji; Ishihara, Keisuke; Satomi, Shinichi; Myodo, Masato; Momma, Toshiyuki; Kozawa, Kazushige

JAEA-Technology 2011-015, 24 Pages, 2011/06

JAEA-Technology-2011-015.pdf:2.28MB

The super compactor in the Advanced Volume Reduction Facilities (AVRF) treats metal wastes mainly generated from research reactors in the Nuclear Science Research Institute of JAEA. Those wastes are compacted from one third to one fourth with maximum 2,000-ton force. In the trial operation using simulated wastes, some technical problems were found to be improve for the stable operation. One problem is the motion mechanism for carrying wastes before and after compaction. The other problem is the mechanism for treating the irregular supercompacted products. In this report, we describe the detail and the result of improvement on those problems for the stable operation in the super compactor.

JAEA Reports

Evaluation of void ratio of the solidified wastes containing supercompacted wastes

Sudo, Tomoyuki; Nakashio, Nobuyuki; Osugi, Takeshi; Mimura, Ryuji; Ishihara, Keisuke; Satomi, Shinichi; Myodo, Masato; Momma, Toshiyuki; Kozawa, Kazushige

JAEA-Technology 2010-041, 38 Pages, 2011/01

JAEA-Technology-2010-041.pdf:4.73MB

The super compactor in the AVRF treats compactible metal wastes mainly generated from research reactors in the Nuclear Science Research Institute of JAEA. Those wastes are compacted with the maximum about 2,000-ton force. The supercompacted wastes are packed into the container and then immobilized with cementitious materials. The solidified wastes (containing supercompacted wastes) become an object for near surface disposal with artificial barrier. For disposal, the solidified wastes must be satisfied the technical criteria. One of the important indicators is the void ratio in the solidified wastes. In this report, we manufactured the supercompacted wastes with the ordinary treatment method for actual wastes treated in the AVRF and immobilized with a mortar grout. The void ratio of the solidified wastes were evaluated in consideration for concrete vault disposal. As a result, We confirmed the integrity of the solidified wastes from a point of view of void ratio.

Journal Articles

Radioactive waste engineering and management

Nakayama, Shinichi; Okoshi, Minoru; Shimada, Taro; Tachibana, Mitsuo; Momma, Toshiyuki; Niibori, Yuichi*; Nagasaki, Shinya*; Ahn, J.*

Genshiryoku Kyokasho "Hoshasei Haikibutsu No Kogaku", 235 Pages, 2011/01

This book is designed to provide everyone with an interest in radioactive waste issues, including students and individuals involved in engineering and public administration, with a graduate-level understanding of radioactive wastes from the scientific foundations that support radioactive waste management covering radioactive waste generation including decommissioning of nuclear facilities, treatment, disposal, clearance and their safety assessment. This book is the one volume of the English translation of the text series "An Advanced Course in Nuclear Engineering" lectured in the University of Tokyo.

JAEA Reports

Verification of improvement of the casting process in metal melting system

Tohei, Toshio; Nakashio, Nobuyuki; Osugi, Takeshi; Ishikawa, Joji; Mizoguchi, Takafumi; Hanawa, Ritsu; Someya, Keita*; Takahashi, Kenji*; Iseda, Hirokatsu; Kozawa, Kazushige; et al.

JAEA-Technology 2010-008, 28 Pages, 2010/06

JAEA-Technology-2010-008.pdf:5.0MB

The Waste Volume Reduction Facility (WVRF) was constructed for volume reduction and the chemical stabilization of the low level radioactive waste in the Nuclear Science Research Institute of JAEA. The metal melting system in the WVRF treats radioactive metal waste. From the experience of trial operations, the improvement has conducted on the casting process in the metal melting system. The performance of the improved casting process was verified through the trial operations from Oct. 2008. In this report, we describe the reduction of the processing time, of the utilities consumption, of the load of maintenance on the improved casting process.

JAEA Reports

Improvement of the casting process in the metal melting system

Tohei, Toshio; Someya, Keita; Takahashi, Kenji; Iseda, Hirokatsu; Kozawa, Kazushige; Momma, Toshiyuki

JAEA-Technology 2009-031, 29 Pages, 2009/06

JAEA-Technology-2009-031.pdf:21.66MB

The Waste Volume Reduction Facility (WVRF) was constructed for volume reduction and the chemical stabilization of the low level radioactive waste (LLW). The metal melting system in the WVRF treats radioactive metal waste. This system has been conducted commissioning since the FY 2003. It was found, from the experience of commissioning, that the improvement of casting process in the metal melting system can be reduced the processing cost, maintenance load, and dose to workers. We planed modification of the device, and embodied from FY 2006 to FY 2007. As a result, we properly improved the casting process. In this report, we describe the idea for improvement of the casting process, the detail of improvement and the estimate of improvement.

JAEA Reports

Construction, management and operation on advanced volume reduction facilities

Higuchi, Hidekazu; Osugi, Takeshi; Nakashio, Nobuyuki; Momma, Toshiyuki; Tohei, Toshio; Ishikawa, Joji; Iseda, Hirokatsu; Mitsuda, Motoyuki; Ishihara, Keisuke; Sudo, Tomoyuki; et al.

JAEA-Technology 2007-038, 189 Pages, 2007/07

JAEA-Technology-2007-038-01.pdf:15.13MB
JAEA-Technology-2007-038-02.pdf:38.95MB
JAEA-Technology-2007-038-03.pdf:48.42MB
JAEA-Technology-2007-038-04.pdf:20.53MB
JAEA-Technology-2007-038-05.pdf:10.44MB

The Advanced Volume Reduction Facilities (AVRF) is constructed to manufacture the waste packages of radioactive waste for disposal in the Nuclear Science Research Institute of the Japan Atomic Energy Agency. The AVRF is constituted from two facilities. The one is the Waste Size Reduction and Storage Facility (WSRSF) which is for reducing waste size, sorting into each material and storing the waste package. The other is the Waste Volume Reduction Facility (WVRF) which is for manufacturing the waste package by volume reducing treatment and stabilizing treatment. WVRF has an induction melting furnace, a plasma melting furnace, an incinerator, and a super compactor for treatment. In this report, we summarized about the basic concept of constructing AVRF, the constitution of facilities, the specifications of machineries and the state of trial operation until March of 2006.

Journal Articles

Trial operation of the advanced volume reduction facilities for LLW at JAEA

Nakashio, Nobuyuki; Higuchi, Hidekazu; Momma, Toshiyuki; Kozawa, Kazushige; Tohei, Toshio; Sudo, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Ko; Ishikawa, Joji; et al.

Journal of Nuclear Science and Technology, 44(3), p.441 - 447, 2007/03

 Times Cited Count:9 Percentile:57.83(Nuclear Science & Technology)

The Japan Atomic Energy Agency (JAEA) constructed the Advanced Volume Reduction Facilities (AVRF), in which volume reduction techniques are applied and achieved high volume reduction ratio, homogenization and stabilization by means of melting or super compaction processes for low level solid wastes. It will be able to produce waste packages for final disposal and to reduce the volume of stored wastes by operating the AVRF. The AVRF consist of the Waste Size Reduction and Storage Facilities (WSRSF) and the Waste Volume Reduction Facilities (WVRF); the former have cutting installations for large size wastes and the latter have melting units and a super compactor. Cutting installations in the WSRSF have been operating since July 1999. Radioactive wastes treated so far amount to 750 m$$^{3}$$ and the volume reduction ratio is from 1.7 to 3.7. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation of the pretreatment system in the WVRF with radioactive wastes has partly started in FY2005.

Journal Articles

System of the advanced volume reduction facilities for LLW at JAERI

Higuchi, Hidekazu; Momma, Toshiyuki; Nakashio, Nobuyuki; Kozawa, Kazushige; Tohei, Toshio; Sudo, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Ko; Ishikawa, Joji; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The JAERI constructed the Advanced Volume Reduction Facilities(AVRF). The AVRF consists of the Waste Size Reduction and Storage Facilities(WSRSF) and the Waste Volume Reduction Facilities(WVRF). By operating the AVRF, it will be able to produce waste packages for final disposal and to reduce the amount of the low level solid wastes. Cutting installations for large wastes such as tanks in the WSRSF have been operating since June 1999. The wastes treated so far amount to 600 m$$^{3}$$ and the volume reduction ratio is around 1/3. The waste volume reduction is carried out by a high-compaction process or melting processes in the WVRF. The metal wastes from research reactors are treated by the high-compaction process. The other wastes are treated by the melting processes that enable to estimate radioactivity levels easily by homogenization and get chemical and physical stability. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation with radioactive wastes will start in FY2005.

Oral presentation

Improvement for monitoring of metal melter inside with the infrared-rays wavelength camera

Ishikawa, Joji; Nakashio, Nobuyuki; Osugi, Takeshi; Iseda, Hirokatsu; Mizoguchi, Takafumi; Kozawa, Kazushige; Momma, Toshiyuki

no journal, , 

no abstracts in English

Oral presentation

Transport to gas phase in metal melting process, 1; Analysis of dust on exhaust gas line

Osugi, Takeshi; Nakashio, Nobuyuki; Iseda, Hirokatsu; Hanawa, Ritsu; Kozawa, Kazushige; Momma, Toshiyuki

no journal, , 

no abstracts in English

Oral presentation

Measurement of oxygen concentration of molten metal in the melting treatment for metallic waste, 1; Influence of inside upper volume of melter

Nakashio, Nobuyuki; Osugi, Takeshi; Iseda, Hirokatsu; Sudo, Tomoyuki; Kozawa, Kazushige; Momma, Toshiyuki

no journal, , 

no abstracts in English

Oral presentation

JAEA's technical experiences and lessons learned for environmental remediation of Fukushima, 1; Overview

Tokizawa, Takayuki; Noguchi, Shinichi; Yoneya, Masayuki; Momma, Toshiyuki; Nakayama, Shinichi; Ishida, Junichiro

no journal, , 

no abstracts in English

Oral presentation

Analysis for adsorption behavior of Cs on clay minerals by TR-DXAFS and STXM

Yaita, Tsuyoshi; Suzuki, Shinichi; Matsumura, Daiju; Kobayashi, Toru; Shiwaku, Hideaki; Momma, Toshiyuki; Nakayama, Shinichi

no journal, , 

no abstracts in English

Oral presentation

Adsorption model of Cs on clay minerals

Yaita, Tsuyoshi; Suzuki, Shinichi; Momma, Toshiyuki; Nakayama, Shinichi; Machida, Masahiko; Okumura, Masahiko; Ikeda, Takashi

no journal, , 

no abstracts in English

Oral presentation

Elucidation of Cs adsorption-desorption mechanism on clay minerals and development of Cs removal for volume reduction of contaminated wastes, 1; Cs adsorption-desorption behavior with levigated vermiculite of Fukushima

Suzuki, Shinichi; Kobayashi, Toru; Yaita, Tsuyoshi; Momma, Toshiyuki; Nakayama, Shinichi; Yamada, Hirohisa*; Hatta, Tamao*; Yokoyama, Shingo*

no journal, , 

no abstracts in English

Oral presentation

Cs adsorption and chemical desorption with Fukushima vermiculite

Suzuki, Shinichi; Yaita, Tsuyoshi; Momma, Toshiyuki; Nakayama, Shinichi; Yokoyama, Shingo*; Hatta, Tamao*; Yamada, Hirohisa*

no journal, , 

no abstracts in English

19 (Records 1-19 displayed on this page)
  • 1