Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 45

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JPDR Facility

Tobita, Minoru*; Haraga, Tomoko; Endo, Tsubasa*; Omori, Hiroyuki*; Mitsukai, Akina; Aono, Ryuji; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2021-013, 30 Pages, 2021/12

JAEA-Data-Code-2021-013.pdf:1.47MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JPDR facility. In this report, we summarized the radioactivity concentrations of 21 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2018-2019.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-3 and JPDR facilities

Tsuchida, Daiki; Haraga, Tomoko; Tobita, Minoru*; Omori, Hiroyuki*; Omori, Takeshi*; Murakami, Hideaki*; Mitsukai, Akina; Aono, Ryuji; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2020-022, 34 Pages, 2021/03

JAEA-Data-Code-2020-022.pdf:1.74MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JRR-3 and JPDR. In this report, we summarized the radioactivity concentrations of 22 radionuclides($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{133}$$Ba, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JPDR and JRR-4

Aono, Ryuji; Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2020-006, 70 Pages, 2020/08

JAEA-Data-Code-2020-006.pdf:2.59MB

Radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried at the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JPDR and JRR-4. In this report, we summarized the radioactivity concentrations of 19 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of those samples.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-2, JRR-3 and hot laboratory facilities

Tobita, Minoru*; Haraga, Tomoko; Sasaki, Takayuki*; Seki, Kotaro*; Omori, Hiroyuki*; Kochiyama, Mami; Shimomura, Yusuke; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2019-016, 72 Pages, 2020/02

JAEA-Data-Code-2019-016.pdf:2.67MB

In the future, radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 25 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{93}$$Mo, $$^{99}$$Tc, $$^{108m}$$Ag, $$^{126}$$Sn, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{233}$$U, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of those samples.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from Post Irradiation Examination Facility

Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2019-012, 70 Pages, 2020/02

JAEA-Data-Code-2019-012.pdf:3.86MB

It is necessary to establish practical evaluation methods to determine radioactivity concentration of radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from Post Irradiation Examination Facility. In this report, we summarized the radioactivity concentrations of 19 radionuclides which were obtained from radiochemical analysis of those samples.

Journal Articles

X-ray and neutron study on the structure of hydrous SiO$$_{2}$$ glass up to 10 GPa

Urakawa, Satoru*; Inoue, Toru*; Hattori, Takanori; Sano, Asami; Kohara, Shinji*; Wakabayashi, Daisuke*; Sato, Tomoko*; Funamori, Nobumasa*; Funakoshi, Kenichi*

Minerals (Internet), 10(1), p.84_1 - 84_13, 2020/01

 Times Cited Count:4 Percentile:72.56(Geochemistry & Geophysics)

The structure of hydrous amorphous SiO$$_{2}$$ is fundamental to investigate the effects of water on the physicochemical properties of oxide glasses and magma. The hydrous SiO$$_{2}$$ glass with 13 wt.% D$$_{2}$$O was synthesized under high-pressure and high-temperature conditions and its structure was investigated by small angle X-ray scattering, X-ray diffraction, and neutron diffraction experiments at pressures of up to 10 GPa and room temperature. This hydrous glass is separated into a SiO$$_{2}$$ rich major phase and a D$$_{2}$$O rich minor phase. Medium-range order of the hydrous glass shrinks compared to the anhydrous SiO$$_{2}$$ glass due to disruption of SiO$$_{4}$$ linkage by formation of Si-OD deuterioxyl, while the pressure response is similar. Most of D$$_{2}$$O molecules are in the small domains and hardly penetrate into SiO$$_{2}$$ major phase.

JAEA Reports

Waste liquid treatment for uranium liquid waste containing impurities

Sato, Yoshiyuki; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Testing 2019-003, 20 Pages, 2019/12

JAEA-Testing-2019-003.pdf:2.08MB

In the Radioactive Waste Management Technology Section, the radioactive liquid waste generated in the test using natural uranium in the past has been stored based on the contents of permission. Although we decided to perform solidification treatment in order to reduce the risk in storage, no rational treatment method has been established so far. Therefore, we examined adsorption treatment of natural uranium using uranium adsorbent (Tannix), and finally stabilized treatment by cement solidification. The treatment methods and findings obtained for a series of operations in waste liquid treatment are summarized in this report for reference when treating similar liquid waste.

JAEA Reports

Study on the evaluation methodology of the radioactivity concentration in low-level radioactive wastes generated from post irradiation examination facility

Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Technology 2019-015, 52 Pages, 2019/11

JAEA-Technology-2019-015.pdf:2.46MB

In the future, radioactive waste which generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. It is necessary to establish the method to evaluate the radioactivity concentrations of the radioactive wastes. In this work, we studied the evaluation method of radioactivity concentration based on radiochemical analysis data (H-3, C-14, Cl-36, Co-60, Ni-63, Sr-90, Mo-93, Nb-94, Tc-99, Ag-108m, Sn-126, I-129, Cs-137, Eu-152, Eu-154, U-233+234, U-238, Pu-238, Pu-239+240, Pu-241, Am-241, Am-243, Cm-244) which was generated from research facility Hot Laboratory. As a result of examining the application of the scaling factor method, the correlation with Key-nuclide in some nuclides which are Sr-90, I-129, Eu-154, U-233+234, Pu-238, Pu-239+240, Am-241, Cm-244 confirmed by the correlation coefficient and t-test. In the present radiochemical analysis data, the mean activity concentration method can be applied to all nuclides which could not be applied to the scaling factor method H-3, C-14, Cl-36, Ni-63, Mo-93, Nb-94, Tc-99, Ag-108m, Sn-126, Eu-152, U-238, Pu-241 and Am-243. Ni-63, Tc-99, Eu-152 and U-238 could be applied to the scaling factor method with getting several additional data, this study will be continued to review for the practical evaluation method.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-2 and JRR-3 facilities

Haraga, Tomoko; Shimomura, Yusuke; Mitsukai, Akina; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2019-004, 48 Pages, 2019/10

JAEA-Data-Code-2019-004.pdf:4.67MB

In the future, radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2 and JRR-3. In this report, we summarized the radioactivity concentrations of 19 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of those samples.

Journal Articles

Safe and rapid development of capillary electrophoresis for ultratrace uranyl ions in radioactive samples by way of fluorescent probe selection for actinide ions from a chemical library

Haraga, Tomoko; Ouchi, Kazuki; Sato, Yoshiyuki; Hoshino, Hitoshi*; Tanana, Rei*; Fujihara, Takashi*; Kurokawa, Hideki*; Shibukawa, Masami*; Ishimori, Kenichiro; Kameo, Yutaka; et al.

Analytica Chimica Acta, 1032, p.188 - 196, 2018/11

 Times Cited Count:6 Percentile:33.4(Chemistry, Analytical)

The development of safe, rapid and highly sensitive analytical methods for radioactive samples, especially actinide (An) ions, represents an important challenge. Here we propose a methodology for selecting appropriate emissive probes for An ions with very low consumption and emission of radioactivity by capillary electrophoresis-laser-induced fluorescence detection (CE-LIF), using a small chemical library of probes with eight different chelating moieties. It was found that the emissive probe, which possesses the tetradentate chelating moiety, was suitable for detecting uranyl ions. The detection limit for the uranyl-probe complex using CE-LIF combined with dynamic ternary complexation and on-capillary concentration techniques was determined to be 0.7 ppt. This method was successfully applied to real radioactive liquid samples collected from nuclear facilities.

JAEA Reports

Radioactivity analysis of metal samples taken from pipes of the Fugen, 5

Haraga, Tomoko; Tobita, Minoru*; Takahashi, Shigemi*; Seki, Kotaro*; Izumo, Sari; Shimomura, Yusuke; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2016-017, 53 Pages, 2017/02

JAEA-Data-Code-2016-017.pdf:3.17MB

Fugen Nuclear Power Station was shut down and now is under decommissioning. Many radioactivity concentration data of dismantled materials have to be accumulated to calculate the scaling factors of radioactive wastes and to verify that the cleared dismantled materials conform to the clearance levels. A simple and rapid radioactivity determination method for radioactive waste samples was developed by Department of Decommissioning and Waste Management. For its demonstration, the simple and rapid radioactivity determination method was applied to metal samples, which were taken from dismantled pipes in contact with heavy water or carbon dioxide gas of Fugen. This report summarizes the radioactivity data obtained from the analysis of those samples.

JAEA Reports

Study on radionuclide analysis of rubble and plants for decommissioning of Fukushima Daiichi Nuclear Power Station

Seki, Kotaro; Sasaki, Takayuki*; Akimoto, Yuji*; Tokunaga, Takahito; Tanaka, Kiwamu; Haraga, Tomoko; Ueno, Takashi; Ishimori, Kenichiro; Hoshi, Akiko; Kameo, Yutaka

JAEA-Technology 2016-013, 37 Pages, 2016/07

JAEA-Technology-2016-013.pdf:2.09MB

In this study, based on the simple and rapid analytical method established from the wastes from research facilities, we created analytical schemes which is applicable to rubble and plants collected at Fukushima Daiichi, then transported to Nuclear Science Research Institute of JAEA. We examined the applicability, and confirmed quantifiability of radioactivity concentration with high recovery rate without being affected by fission products such as $$^{90}$$Sr and $$^{137}$$Cs.

JAEA Reports

Radioactivity analysis of metal samples taken from pipes of the Fugen, 4

Haraga, Tomoko; Tobita, Minoru*; Takahashi, Shigemi*; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2015-025, 52 Pages, 2016/03

JAEA-Data-Code-2015-025.pdf:1.92MB

Fugen Nuclear Power Station was shut down and now is under decommissioning. Many radioactivity concentration data of dismantled materials have to be accumulated to calculate the scaling factors of radioactive wastes and verify that the cleared dismantled materials conform to the clearance levels. A simple and rapid radioactivity determination method for radioactive waste samples was developed in Department of Decommissioning and Waste Management. For the demonstration, the simple and rapid radioactivity determination method was applied to metal samples, which were taken from dismantled pipes of Fugen. This report summarizes the radioactivity data obtained from the analysis of those samples.

Journal Articles

Application of capillary electrophoresis with laser-induced fluorescence detection for the determination of trace neodymium in spent nuclear fuel using complexation with an emissive macrocyclic polyaminocarboxylate probe

Haraga, Tomoko; Saito, Shingo*; Sato, Yoshiyuki; Asai, Shiho; Hanzawa, Yukiko; Hoshino, Hitoshi*; Shibukawa, Masami*; Ishimori, Kenichiro; Takahashi, Kuniaki

Analytical Sciences, 30(7), p.773 - 776, 2014/07

 Times Cited Count:5 Percentile:21.87(Chemistry, Analytical)

A simple and rapid method with low radiation exposure risk was developed for the determination of neodymium in spent nuclear fuel by CE with LIF detection using a fluorescent ligand having a macrocyclic hexadentate polyaminocarboxylate structure. The concentration of Nd(III) in a spent nuclear fuel sample was determined with no interference from various matrix elements, including lanthanides and uranium (at a 200-fold excess), with 92 $$pm$$ 3% recovery. This is due to method's high resolution based on establishing a ternary complex equilibrium during migration in which the hydroxyl ion plays an auxiliary role.

JAEA Reports

Radioactivity analysis of metal samples taken from pipes of the Fugen, 3

Haraga, Tomoko; Tobita, Minoru*; Takahashi, Shigemi*; Sakatani, Keiichi; Ishimori, Kenichiro; Takahashi, Kuniaki

JAEA-Data/Code 2014-007, 52 Pages, 2014/06

JAEA-Data-Code-2014-007.pdf:28.47MB

Fugen Nuclear Power Station was shut down and now is under decommissioning. Many radioactivity concentration data of dismantled materials have to be accumulated to calculate the scaling factors of radioactive wastes and verify that the cleared dismantled materials conform to the clearance levels. A simple and rapid radioactivity determination method for radioactive waste samples was developed in Nuclear Cycle Backend Directorate. For the demonstration, the simple and rapid radioactivity determination method was applied to metal samples, which were taken from dismantled pipes of Fugen. This report summarizes the radioactivity data obtained from the analysis of those samples.

Journal Articles

Magnetic properties of R$$_{2}$$Fe$$_{3}$$O$$_{7}$$ (R=Yb and Lu)

Yoshii, Kenji; Ikeda, Naoshi*; Fukuyama, Ryota*; Nagata, Tomoko*; Kambe, Takashi*; Yoneda, Yasuhiro; Fukuda, Tatsuo; Mori, Shigeo*

Solid State Communications, 173, p.34 - 37, 2013/11

 Times Cited Count:2 Percentile:11.91(Physics, Condensed Matter)

We have investigated the magnetic properties of R$$_{2}$$Fe$$_{3}$$O$$_{7}$$ (R=Yb and Lu), which belongs to the homologous family of electronic ferroelectric RFe$$_{2}$$O$$_{4}$$. Magnetization measurements show ferrimagnetic ordering at the Neel temperature (T$$_{N}$$) of about 270 K, which is slightly higher than that of RFe$$_{2}$$O$$_{4}$$ (T$$_{N}$$ about 230-250 K). Observation of spin glass and exchange bias shows a coexistence of ferromagnetic and antiferromagneticinteractions, similarly to RFe$$_{2}$$O$$_{4}$$. This situation gives rise to a complex magnetic change and a broad peak of magnetic entropy change. Some characteristics, such as refrigeration temperatures higher than in RFe$$_{2}$$O$$_{4}$$, seem to offer a possibility of this system to applications.

JAEA Reports

Radioactivity analysis of metal samples taken from pipes of the Fugen

Haraga, Tomoko; Kameo, Yutaka; Ishimori, Kenichiro; Shimada, Asako; Tobita, Minoru*; Takahashi, Shigemi*; Takahashi, Kuniaki

JAEA-Data/Code 2012-031, 39 Pages, 2013/02

JAEA-Data-Code-2012-031.pdf:9.28MB

The Fugen Nuclear Power Station was shut down and decommissioning of the Fugen has been implemented. To calculate the scaling factor of radioactive waste or advance the clearance of dismantled materials, a large number of radioactivity concentration data of dismantled materials have to be accumulated. For these reasons, the simple and rapid radioactivity determination method was applied for metal samples, which were taken from pipes of the Fugen. The present report is summarized analytical procedures and obtained radioactivity data of the Fugen pipe samples.

Journal Articles

Exchange bias in multiferroic $$R$$Fe$$_{2}$$O$$_{4}$$ ($$R$$=Y, Er, Tm, Yb, Lu and In)

Yoshii, Kenji; Ikeda, Naoshi*; Nishihata, Yasuo; Maeda, Daisuke*; Fukuyama, Ryota*; Nagata, Tomoko*; Kano, Jun*; Kambe, Takashi*; Horibe, Yoichi*; Mori, Shigeo*

Journal of the Physical Society of Japan, 81(3), p.033704_1 - 033704_4, 2012/03

 Times Cited Count:10 Percentile:58.4(Physics, Multidisciplinary)

Exchange bias (EB) behavior has been observed for multiferroic $$R$$Fe$$_{2}$$O$$_{4}$$ ($$R$$=Y, Er, Tm, Yb, Lu and In). The materials with the small $$R$$$$^{3+}$$ ions ($$R$$=Tm, Yb, Lu and In) exhibit large EB fields ($$_sim^{>}$$ 1 kOe) below $$sim$$100-150 K. This property is rooted in a magnetically glassy state, arising from the competition between ferro- and antiferromagnetic domain interactions. In addition, the exchange bias field tends to be more enhanced for smaller $$R$$$$^{3+}$$ ions. Hence, the EB is controlled by the substitution at the $$R$$-site in this series.

Journal Articles

Systematic analysis method for radioactive wastes generated from nuclear research facilities

Kameo, Yutaka; Ishimori, Kenichiro; Haraga, Tomoko; Shimada, Asako; Katayama, Atsushi; Nakashima, Mikio*; Takahashi, Kuniaki

Nihon Genshiryoku Gakkai Wabun Rombunshi, 10(3), p.216 - 225, 2011/09

Analytical methods have been developed for simple and rapid determination of radioactive nuclides, which are selected as important nuclides for safety assessment of disposal of wastes generated from research facilities. We advanced the development of a high-efficiency non-destructive measurement technique for $$gamma$$-ray emitting nuclides, simple and rapid methods for pretreatment of hard-to dissolve samples and subsequent radiochemical separations, and rapid determination methods for long-lived nuclides. In order to establish a system to analyze the important nuclides in various kinds of samples, actual radioactive wastes such as concentrated liquid waste, activated concrete, and metal pipes, were analyzed by the present method. The results showed that the present method was well suited for a rapid and simple determination of low-level radioactive wastes generated from research facilities.

JAEA Reports

Radioactivity analysis of metal samples taken from pipes of the Fugen

Kameo, Yutaka; Haraga, Tomoko; Ishimori, Kenichiro; Shimada, Asako; Tobita, Minoru*; Takahashi, Shigemi*; Takahashi, Kuniaki

JAEA-Data/Code 2010-028, 32 Pages, 2011/02

JAEA-Data-Code-2010-028.pdf:1.62MB

The Fugen Nuclear Power Station was shut down and decommissioning of the Fugen has been implemented. To calculate the scaling factor of radioactive waste or advance the clearance of dismantled materials, a large number of radioactivity concentration data of dismantled materials have to be accumulated. For these reasons, the simple and rapid radioactivity determination method was applied for metal samples, which were taken from pipes of the Fugen. The present report is summarized analytical procedures and obtained radioactivity data of the Fugen pipe samples.

45 (Records 1-20 displayed on this page)