Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Amano, Yuki; Sachdeva, R.*; Gittins, D.*; Anantharaman, K.*; Lei, S.*; Valentin-Alvarado, L. E.*; Diamond, S.*; Beppu, Hikari*; Iwatsuki, Teruki; Mochizuki, Akihito; et al.
Environmental Microbiome (Internet), 19, p.105_1 - 105_17, 2024/12
Times Cited Count:0 Percentile:0.00(Genetics & Heredity)Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Ishihara, Takanori; Hakoiwa, Hiroaki; Asamori, Koichi; Murakami, Osamu; Fukuda, Shoma; Ogita, Yasuhiro; Kagami, Saya; et al.
JAEA-Research 2024-013, 65 Pages, 2024/11
This annual report documents the progress of research and development (R&D) in the 2nd fiscal year of the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028) to provide the scientific base for assessing geosphere stability for long-term isolation of high-level radioactive waste. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.
Niwa, Masakazu; Shimada, Akiomi; Asamori, Koichi; Sueoka, Shigeru; Komatsu, Tetsuya; Nakajima, Toru; Ogata, Manabu; Uchida, Mao; Nishiyama, Nariaki; Tanaka, Kiriha; et al.
JAEA-Review 2024-035, 29 Pages, 2024/09
This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2024. The objectives and contents of this research are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.
Yuguchi, Takashi*; Sasao, Eiji; Hibara, Ryoko*; Murakami, Hiroaki; Ozaki, Yusuke
Heliyon (Internet), 10(17), p.e37417_1 - e37417_17, 2024/09
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Understanding the mass transfer characteristics of matrix diffusion and sorption is important in geological disposal of high-level radioactive waste in crystalline rock. We present a comparative discussion of the effective diffusion coefficient (De), porosity, and petrological data for rock samples collected from the Toki Granite in central Japan, to evaluate the role of micropores within minerals in retardation by matrix diffusion and sorption in granitic rocks. De was derived from the through-diffusion experiments. Petrological data consist of the fracture frequency, the extent of hydrothermal alteration in the minerals, the micropore volume in the minerals, and the three-dimensional modal mineralogy for the target rock samples. The relationship between the De, porosity, and petrological data has the following implications: 1) Micropores act as storage pores that contribute to retardation; 2) Once the uranine, cations, and anion penetrate the micropores in the minerals through matrix diffusion, the cations are sorbed on the micropore surfaces; 3) Regions with a high fracture frequency are associated with not only active advection-dispersion through fractures, but also retardation due to matrix diffusion and sorption.
Sakurai, Akitaka; Aoyagi, Kazuhei; Murakami, Hiroaki; Tamura, Tomonori; Fujieda, Daigo; Togase, Kazuki
JAEA-Data/Code 2024-005, 48 Pages, 2024/07
We currently focus on the three tasks that were identified as "key R&D challenges to be tackled" in the "Horonobe Underground Research Plan for the fiscal year 2020 Onwards". These tasks include "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rocks to natural perturbations". To implement these tasks, we will excavate shafts and galleries to the 500 m depth. From fiscal year 2023, we will start extension of the 350 m gallery excavating 3 horizontal gallery (Niches No.6, No.7, and Niche of the East Shaft No.1) and excavation of the shaft to the 500 m depth and excavation of 500 m gallery. This report summarizes the measurement data acquired at Niches No.6, No.7, and Niche of the East Shaft No.1 in fiscal year 2023 to accumulate the basic data for carrying out the Observational Construction Program for the excavation of the shaft to the 500 m depth and galleries at the 500 m depth.
Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Fujita, Natsuko; Yokoyama, Tatsunori; Ogita, Yasuhiro; Fukuda, Shoma; Nakajima, Toru; Kagami, Saya; Ogata, Manabu; et al.
JAEA-Review 2023-017, 27 Pages, 2023/10
This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2023. The objectives and contents in fiscal year 2023 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.
Nakazawa, Osamu; Takiya, Hiroaki; Murakami, Masashi; Donomae, Yasushi; Meguro, Yoshihiro
JAEA-Review 2023-012, 6 Pages, 2023/08
The selection of back-end technology development issues to be prioritized and their schedule of the Japan Atomic Energy Agency (JAEA) have been put together as the "Strategic Roadmap for Back-end Technology Development." The results of questionnaires on development technologies (seeds) and technical issues (needs) within JAEA conducted in FY2022 were reflected in the selection. The issues were extracted from among those that match the seeds and needs, from the perspective of early implementation in the work front and the perspective of common issues, and nine themes were selected. We will build a cross-organizational implementation framework within JAEA and aim to implement the development results in the work front as well as social implementation.
Murakami, Hiroaki; Nishiyama, Nariaki; Takeuchi, Ryuji; Iwatsuki, Teruki
Oyo Chishitsu, 64(2), p.60 - 69, 2023/06
In order to confirm the quality control items for borehole closure in radioactive waste disposal projects, in-situ borehole sealing tests using bentonite material were conducted. As a result, the closure performance was successfully demonstrated by comparing the data of water injection tests conducted before and after the installation of the closure material. However, the breakthrough was observed after closing, probably due to high differential pressure applied to the seal section. Thus, it is important to ascertain throughout the entire operation that the borehole is adequately closed. The placement and specifications of the closure material should be determined according to the hydrogeological structure in the borehole. The confirmation items to use bentonite for sealing material are identified to be: to consider swelling and density loss in the borehole; to place the planned depth using appropriate emplacement technique; to be placed without damage to seals when use some backfilling materials, considering effect of permeability on adjacent seals.
Takeuchi, Ryuji; Murakami, Hiroaki; Nishio, Kazuhisa*
JAEA-Data/Code 2022-008, 184 Pages, 2023/01
The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydro-chemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory. This report summarizes the results of the groundwater pressure and hydro-chemical monitoring conducted from FY2020 to FY2021.
Yogo, Akifumi*; Lan, Z.*; Arikawa, Yasunobu*; Abe, Yuki*; Mirfayzi, S. R.*; Wei, T.*; Mori, Takato*; Golovin, D.*; Hayakawa, Takehito*; Iwata, Natsumi*; et al.
Physical Review X, 13(1), p.011011_1 - 011011_12, 2023/01
Times Cited Count:21 Percentile:96.00(Physics, Multidisciplinary)Murakami, Hiroaki; Takeuchi, Ryuji; Iwatsuki, Teruki
JAEA-Technology 2022-022, 34 Pages, 2022/10
Japan Atomic Energy Agency (JAEA) has been conducting the hydro-pressure and hydrochemical monitoring for more than two decades to understand the hydrochemical disturbance due to the excavation of tunnels at Mizunami Underground Research Laboratory (MIU). To understand the environmental influence due to the backfilling of research tunnels that started in 2019, environmental monitoring of groundwater has been performed and recovery status of groundwater is being confirmed. In order to observe the deep-groundwater environment from the ground, the groundwater pressure monitoring and sampling, which have been performed in the research tunnel, are to be performed from the ground. However, backfilling of a large-scale underground facilities such as MIU is globally unprecedented, thus it was necessary to develop a new observation system. Accordingly, we developed a new observation network to observe the environment around the research tunnels of the MIU. This system enables monitoring of groundwater pressure and water sampling of the backfilled tunnel from the ground while utilizing the existing-monitoring system installed in the tunnels. Accordingly, we demonstrated its technology through the environmental monitoring of groundwater. The results of the environmental monitoring and the existing groundwater data of MIU indicate that this system is able to monitor the groundwater environment in the backfilled tunnels.
Takeuchi, Ryuji; Onoe, Hironori; Murakami, Hiroaki; Watanabe, Yusuke; Mikake, Shinichiro; Ikeda, Koki; Iyatomi, Yosuke; Nishio, Kazuhisa*; Sasao, Eiji
JAEA-Review 2021-003, 63 Pages, 2021/06
The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of JAEA reformation in FY2014, JAEA identified three remaining important issues on the geoscientific research program based on the synthesized latest results of research and development (R&D): "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technologies". At the MIU, the R&D are being pursued with a focus on the remaining important issues from FY2015, and satisfactory results have been achieved. Based on this situation, the R&D on the MIU Project were completed at the end of FY2019. In this report, the results of R&D and construction activities of the MIU Project in FY2019 are summarized.
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Aosai, Daisuke*; Hara, Naohiro*
JAEA-Data/Code 2020-012, 80 Pages, 2020/10
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2019. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Murakami, Hiroaki; Iwatsuki, Teruki; Takeuchi, Ryuji; Nishiyama, Nariaki*
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(1), p.22 - 33, 2020/06
Geological disposal of radioactive waste requires the large amounts of fundamental technical knowledge throughout the project. Monitoring is carried out to collect site-relevant information for the creation of an environmental database, to assist in the decision-making process, etc. We summarized the current technical level and problems of the groundwater monitoring in the world. Through the research and technology development so far, the technologies have been developed for drilling borehole in the geological environment survey prior to monitoring and the selection of the monitoring site. However, the following technical developments are remaining issues: long-term operation method of monitoring equipment, retrieving method of monitoring equipment after long-term operation, transport method of backfill material for borehole sealing, technical basis for the sealing performance when the borehole-protective casing and strainer tube are left.
Okihara, Mitsunobu*; Yahagi, Ryoji*; Iwatsuki, Teruki; Takeuchi, Ryuji; Murakami, Hiroaki
JAEA-Technology 2019-021, 77 Pages, 2020/03
One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on monitoring techniques of the geological environment. In this report, the conceptual design of the monitoring system for groundwater pressure and water chemistry was carried out. The currently installed and used system in research galleries at various depths was re-designed to make it possible to collect groundwater and observe the water pressure on the ground.
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Aosai, Daisuke*; Kumamoto, Yoshiharu*; Iwatsuki, Teruki
JAEA-Data/Code 2019-019, 74 Pages, 2020/03
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2018. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Sato, Tetsuro*; Seki, Akiyuki; Sanada, Yukihisa; Wainwright-Murakami, Haruko*; et al.
Journal of Radiation Protection and Research, 44(4), p.128 - 148, 2019/12
Nishio, Kazuhisa*; Murakami, Hiroaki; Iyatomi, Yosuke; Hama, Katsuhiro
JAEA-Review 2018-037, 53 Pages, 2019/03
The Tono Geoscience Center (TGC) of Japan Atomic Energy Agency (JAEA) has been conducting geoscientific study in order to establish a scientific and technological basis for the geological disposal of HLW. Technical information of the result on the geoscientific study conducted at TGC is provided at the annual Information and Opinion Exchange Conference on Geoscientific Study of TGC for exchanging opinions among researchers and engineers from universities, research organizations and private companies. This document compiles the research presentations and posters of the conference in Mizunami on November 29, 2018.
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Hayashida, Kazuki*; Aosai, Daisuke*; Kumamoto, Yoshiharu*; Iwatsuki, Teruki
JAEA-Data/Code 2018-021, 76 Pages, 2019/03
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2017. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Iwatsuki, Teruki; Shibata, Masahito*; Murakami, Hiroaki; Watanabe, Yusuke; Fukuda, Kenji
Doboku Gakkai Rombunshu, G (Kankyo) (Internet), 75(1), p.42 - 54, 2019/03
In order to clarify the influence of shotcrete in the underground facility on the groundwater chemistry, an in-situ closed test was conducted in the mock-up tunnel at the depth of 500 m. Brucite, Ettringite, Ca(OH) , Gibbsite, K
CO
, Na
CO
10H
O, SiO
(a) and Calcite were identified as the dominant minerals affecting the water chemistry. Furthermore, the shotcrete constructed in the tunnel has a reaction capacity which can produce about 570 m
of alkaline groundwater (pH12.4) saturated with Ca(OH)
. The estimation would improve the accuracy of prediction analysis of the long-term chemical influence of cement materials after the closure of the tunnel.