Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nagatsuka, Kentaro; Noguchi, Hiroki; Nagasumi, Satoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Nishihara, Tetsuo; Sakaba, Nariaki
Nuclear Engineering and Design, 425, p.113338_1 - 113338_11, 2024/08
Times Cited Count:4 Percentile:82.82(Nuclear Science & Technology)HTGR has a potential to contribute to decarbonization of hard-to-abate industries by supplying a large amount of hydrogen and high temperature heat or steam without carbon dioxide emission. JAEA has been conducting R&Ds for HTGR technologies with High Temperature Engineering Test Reactor (HTTR). This paper shows that HTTR's tests including the loss of core cooing test as a joint the OECD/NEA international research project and a HTTR heat application test plan which demonstrate hydrogen production by coupling the HTTR with a hydrogen production test facility. Additionally, aiming for operation start from the latter half of 2030s, the basic design of the HTGR demonstration reactor has been shown. The Japan's HTGR technology capabilities established by the HTTR project will be fully utilized for the construction of HTGR demonstration reactor.
Ishitsuka, Etsuo; Nagasumi, Satoru; Hasegawa, Toshinari; Kawai, Hiromi*; Wakisaka, Shinji*; Nagase, Sota*; Nakamura, Kento*; Yaguchi, Hiroki*; Ishii, Toshiaki; Nakano, Yumi*; et al.
JAEA-Technology 2024-008, 23 Pages, 2024/07
Five people from three universities participated in the 2023 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the analysis of HTTR core, the analysis of behavior on loss of forced cooling test, the analysis of Iodine deposition behavior in primary cooling system and the feasibility study of energy storage system for HTGRs. In the questionnaire after this training, there were impressions such as that it was useful as a work experience and some students found it useful for their own research. These impressions suggest that this training was generally evaluated as good.
Nemoto, Takahiro; Fujiwara, Yusuke; Arakawa, Ryoki; Choyama, Yuya; Nagasumi, Satoru; Hasegawa, Toshinari; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; et al.
JAEA-Technology 2024-003, 17 Pages, 2024/06
In order to investigate the cause of the increase in differential pressure in the primary helium circulator filter that occurred during the RS-14 cycle, a clogged filter was investigated. As a result of the investigation, deposits caused by silicone oil were confirmed on the surface of the filter element. These results revealed that the cause of filter clogging was silicone oil mixed into the primary system due to performance deterioration of the charcoal filter in the gas circulator of primary helium purification system. As a measure to prevent the recurrence of this event, in addition to the conventional management based on operating hours for replacing of charcoal filter in the gas circulator of primary helium purification system, we have established a new replacement plan for every three years.
Hasegawa, Toshinari; Nagasumi, Satoru; Nemoto, Takahiro; Nakajima, Kunihiro; Yokoyama, Keisuke; Fujiwara, Yusuke; Arakawa, Ryoki; Iigaki, Kazuhiko; Inoi, Hiroyuki; Kawamoto, Taiki
Proceedings of 2024 International Congress on Advanced in Nuclear Power Plants (ICAPP 2024) (Internet), 10 Pages, 2024/06
The filter element of the primary gas circulators (PGC) in High Temperature engineering Test Reactor (HTTR) and its deposits were investigated by Scanning Electron Microscope (SEM) observation and Energy Dispersive X-ray spectroscopy (EDX) analysis to find the cause of the increase of the filter differential pressure during the operation in 2021. SEM observation showed that the clumpy deposits and fibrous deposits smaller than the filtration pore size and the rod-shaped deposits larger than the pore size were present on the filter element. EDX analysis showed that the clumpy deposits and fibrous deposits could include silicone oil in the primary helium purification system (PHPS) gas circulators and that the rod-shaped deposits were thermal insulators inside of the co-axial double pipes in the primary cooling system. It is considered that silicone oil leaked from the PHPS gas circulators due to deterioration in the absorption performance of the activated charcoal filter. Next, it could be vaporized and reach PGC's filter element after passing through the reactor core. Since those deposits including silicone oil were present over the entire surface of the filter element, the filter differential pressure could be increased due to a reduction in the pore size and a rise in its flow resistance. The thermal insulator was unrelated to filter clogging because it was present mainly in the lower part of the filter element. Therefore, silicone oil could increase the filter differential pressure, and the graphite powder, which is the cause of the previous issue was unrelated.
Ho, H. Q.; Ishii, Toshiaki; Nagasumi, Satoru; Ono, Masato; Shimazaki, Yosuke; Ishitsuka, Etsuo; Sawahata, Hiroaki; Goto, Minoru; Simanullang, I. L.*; Fujimoto, Nozomu*; et al.
Nuclear Engineering and Design, 417, p.112795_1 - 112795_6, 2024/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Ishitsuka, Etsuo; Ho, H. Q.; Kitagawa, Kanta*; Fukuda, Takahito*; Ito, Ryo*; Nemoto, Masaya*; Kusunoki, Hayato*; Nomura, Takuro*; Nagase, Sota*; Hashimoto, Haruki*; et al.
JAEA-Technology 2023-013, 19 Pages, 2023/06
Eight people from five universities participated in the 2022 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the feasibility study for nuclear battery, the burn-up analysis of HTTR core, the feasibility study for Cf production, the analysis of behavior on loss of forced cooling test, and the thermal-hydraulic analysis near reactor pressure vessel. In the questionnaire after this training, there were impressions such as that it was useful as a work experience, that some students found it useful for their own research, and that discussion with other university students was a good experience. These impressions suggest that this training was generally evaluated as good.
Nemoto, Takahiro; Arakawa, Ryoki; Kawakami, Satoru; Nagasumi, Satoru; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; Furusawa, Takayuki; Inoi, Hiroyuki; et al.
JAEA-Technology 2023-005, 33 Pages, 2023/05
During shut down of the HTTR (High Temperature engineering Test Reactor) RS-14 cycle, an increasing trend of filter differential pressure for the helium gas circulator was observed. In order to investigate this phenomenon, the blower of the primary helium purification system was disassembled and inspected. As a result, it is clear that the silicon oil mist entered into the primary coolant due to the deterioration of the charcoal filter performance. The replacement and further investigation of the filter are planning to prevent the reoccurrence of the same phenomenon in the future.
Simanullang, I. L.*; Nakagawa, Naoki*; Ho, H. Q.; Nagasumi, Satoru; Ishitsuka, Etsuo; Iigaki, Kazuhiko; Fujimoto, Nozomu*
Annals of Nuclear Energy, 177, p.109314_1 - 109314_8, 2022/11
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Ho, H. Q.; Ishii, Toshiaki; Nagasumi, Satoru; Ono, Masato; Shimazaki, Yosuke; Ishitsuka, Etsuo; Goto, Minoru; Simanullang, I. L.*; Fujimoto, Nozomu*; Iigaki, Kazuhiko
Nuclear Engineering and Design, 396, p.111913_1 - 111913_9, 2022/09
Times Cited Count:1 Percentile:15.53(Nuclear Science & Technology)Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.
JAEA-Technology 2021-016, 16 Pages, 2021/09
As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (183 layers) fuel blocks with 20% enrichment of
U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.
Ikeda, Reiji*; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo; Fujimoto, Nozomu*
JAEA-Technology 2021-015, 32 Pages, 2021/09
Burnup calculation of the HTTR considering temperature distribution and detailed burning regions was carried out using MVP-BURN code. The results show that the difference in k, as well as the difference in average density of some main isotopes, is insignificant between the cases of uniform temperature and detailed temperature distribution. However, the difference in local density is noticeable, being 6% and 8% for
U and
Pu, respectively, and even 30% for the burnable poison
B. Regarding the division of burning regions to more detail, the change of k
is also small of 0.6%
k/k or less. The small burning region gives a detailed distribution of isotopes such as
U,
Pu, and
B. As a result, the effect of graphite reflector and the burnup behavior could be evaluated more clearly compared with the previous study.
Tochio, Daisuke; Nagasumi, Satoru; Inoi, Hiroyuki; Hamamoto, Shimpei; Ono, Masato; Kobayashi, Shoichi; Uesaka, Takahiro; Watanabe, Shuji; Saito, Kenji
JAEA-Technology 2021-014, 80 Pages, 2021/09
In response to the new regulatory standards established in response to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station in March 2011, measures and impact assessments related to internal flooding at HTTR were carried out. In assessing the impact, considering the characteristics of the high-temperature gas-cooled reactor, flooding due to assumed damage to piping and equipment, flooding due to water discharge from the system installed to prevent the spread of fire, and flooding due to damage to piping and equipment due to an earthquake. The effects of submersion, flooding, and flooding due to steam were evaluated for each of them. The impact of the overflow of liquids containing radioactive materials outside the radiation-controlled area was also evaluated. As a result, it was confirmed that flooding generated at HTTR does not affect the safety function of the reactor facility by taking measures.
Fujimoto, Nozomu*; Tada, Kenichi; Ho, H. Q.; Hamamoto, Shimpei; Nagasumi, Satoru; Ishitsuka, Etsuo
Annals of Nuclear Energy, 158, p.108270_1 - 108270_8, 2021/08
Times Cited Count:3 Percentile:32.32(Nuclear Science & Technology)Fujimoto, Nozomu*; Fukuda, Kodai*; Honda, Yuki*; Tochio, Daisuke; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo
JAEA-Technology 2021-008, 23 Pages, 2021/06
The effect of mesh division around the burnable poison rod on the burnup calculation of the HTTR core was investigated using the SRAC code system. As a result, the mesh division inside the burnable poison rod does not have a large effect on the burnup calculation, and the effective multiplication factor is closer to the measured value than the conventional calculation by dividing the graphite region around the burnable poison rod into a mesh. It became clear that the mesh division of the graphite region around the burnable poison rod is important for more appropriately evaluating the burnup behavior of the HTTR core..
Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Nagasumi, Satoru; Goto, Minoru; Ishitsuka, Etsuo
Nuclear Engineering and Design, 377, p.111161_1 - 111161_9, 2021/06
Times Cited Count:3 Percentile:32.32(Nuclear Science & Technology)Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.
High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02
As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.
Nagasumi, Satoru; Matsunaka, Kazuaki*; Fujimoto, Nozomu*; Ishii, Toshiaki; Ishitsuka, Etsuo
JAEA-Technology 2020-003, 13 Pages, 2020/05
The influence of the control rod model on the nuclear characteristics of the HTTR has been evaluated, by creating detailed control rod model, in which geometric shape was close to that of the actual control rod structure, in MVP code. According to refinement of the control rod model, the critical control rod position was 11 mm lower than that of the conventional model, and this was close to the measured value of 1775 mm. The reactivity absorbed by the shock absorber located at the tip of the control rod was 0.2%k/k, and this was 14 mm difference at the critical control rod position. Considering the effect of refinement of the control rod and the effect of the shock absorber, the correction amount for the analysis value in SRAC code due to the shape effect of the control rod, is -0.05%
k/k in reactivity, and -3 mm in the critical control rod position at low temperature criticality.
Hamamoto, Shimpei; Shimazaki, Yosuke; Nagasumi, Satoru; Tochio, Daisuke; Iigaki, Kazuhiko; Ishitsuka, Etsuo
no journal, ,
Regarding the countermeasures against accidents that may release a large amount of radioactive materials, which is one of the items of conformity review on the New Regulatory Requirements for HTTR (High temperature engineering test reactor), this presentation describes the concept of accident selection, the evaluation method and results of the reactor behavior at the time of the selected accident and the countermeasures to be taken at that time.
Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Nagasumi, Satoru; Goto, Minoru; Ishitsuka, Etsuo
no journal, ,
Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Ishii, Toshiaki; Nagasumi, Satoru; Ishitsuka, Etsuo
no journal, ,