Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 35

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Report of summer holiday practical training 2020; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 3

Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.

JAEA-Technology 2021-016, 16 Pages, 2021/09

JAEA-Technology-2021-016.pdf:1.8MB

As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (18$$times$$3 layers) fuel blocks with 20% enrichment of $$^{235}$$U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.

JAEA Reports

HTTR burnup characteristic analysis with detailed axial burning region using MVP-BURN

Ikeda, Reiji*; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo; Fujimoto, Nozomu*

JAEA-Technology 2021-015, 32 Pages, 2021/09

JAEA-Technology-2021-015.pdf:2.74MB

Burnup calculation of the HTTR considering temperature distribution and detailed burning regions was carried out using MVP-BURN code. The results show that the difference in k$$_{rm eff}$$, as well as the difference in average density of some main isotopes, is insignificant between the cases of uniform temperature and detailed temperature distribution. However, the difference in local density is noticeable, being 6% and 8% for $$^{235}$$U and $$^{239}$$Pu, respectively, and even 30% for the burnable poison $$^{10}$$B. Regarding the division of burning regions to more detail, the change of k$$_{rm eff}$$ is also small of 0.6%$$Delta$$k/k or less. The small burning region gives a detailed distribution of isotopes such as $$^{235}$$U, $$^{239}$$Pu, and $$^{10}$$B. As a result, the effect of graphite reflector and the burnup behavior could be evaluated more clearly compared with the previous study.

JAEA Reports

Impact assessment for internal flooding in HTTR (High temperature engineering test reactor)

Tochio, Daisuke; Nagasumi, Satoru; Inoi, Hiroyuki; Hamamoto, Shimpei; Ono, Masato; Kobayashi, Shoichi; Uesaka, Takahiro; Watanabe, Shuji; Saito, Kenji

JAEA-Technology 2021-014, 80 Pages, 2021/09

JAEA-Technology-2021-014.pdf:5.87MB

In response to the new regulatory standards established in response to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station in March 2011, measures and impact assessments related to internal flooding at HTTR were carried out. In assessing the impact, considering the characteristics of the high-temperature gas-cooled reactor, flooding due to assumed damage to piping and equipment, flooding due to water discharge from the system installed to prevent the spread of fire, and flooding due to damage to piping and equipment due to an earthquake. The effects of submersion, flooding, and flooding due to steam were evaluated for each of them. The impact of the overflow of liquids containing radioactive materials outside the radiation-controlled area was also evaluated. As a result, it was confirmed that flooding generated at HTTR does not affect the safety function of the reactor facility by taking measures.

Journal Articles

Nuclear data processing code FRENDY; A Verification with HTTR criticality benchmark experiments

Fujimoto, Nozomu*; Tada, Kenichi; Ho, H. Q.; Hamamoto, Shimpei; Nagasumi, Satoru; Ishitsuka, Etsuo

Annals of Nuclear Energy, 158, p.108270_1 - 108270_8, 2021/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

JAEA Reports

Mesh effect around burnable poison rod of cell model for HTTR fuel block

Fujimoto, Nozomu*; Fukuda, Kodai*; Honda, Yuki*; Tochio, Daisuke; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo

JAEA-Technology 2021-008, 23 Pages, 2021/06

JAEA-Technology-2021-008.pdf:2.62MB

The effect of mesh division around the burnable poison rod on the burnup calculation of the HTTR core was investigated using the SRAC code system. As a result, the mesh division inside the burnable poison rod does not have a large effect on the burnup calculation, and the effective multiplication factor is closer to the measured value than the conventional calculation by dividing the graphite region around the burnable poison rod into a mesh. It became clear that the mesh division of the graphite region around the burnable poison rod is important for more appropriately evaluating the burnup behavior of the HTTR core..

Journal Articles

Preparation for restarting the high temperature engineering test reactor; Development of utility tool for auto seeking critical control rod position

Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Nagasumi, Satoru; Goto, Minoru; Ishitsuka, Etsuo

Nuclear Engineering and Design, 377, p.111161_1 - 111161_9, 2021/06

 Times Cited Count:1 Percentile:81.22(Nuclear Science & Technology)

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

JAEA Reports

Study on control rod model in HTTR core analysis

Nagasumi, Satoru; Matsunaka, Kazuaki*; Fujimoto, Nozomu*; Ishii, Toshiaki; Ishitsuka, Etsuo

JAEA-Technology 2020-003, 13 Pages, 2020/05

JAEA-Technology-2020-003.pdf:1.5MB

The influence of the control rod model on the nuclear characteristics of the HTTR has been evaluated, by creating detailed control rod model, in which geometric shape was close to that of the actual control rod structure, in MVP code. According to refinement of the control rod model, the critical control rod position was 11 mm lower than that of the conventional model, and this was close to the measured value of 1775 mm. The reactivity absorbed by the shock absorber located at the tip of the control rod was 0.2%$$Delta$$k/k, and this was 14 mm difference at the critical control rod position. Considering the effect of refinement of the control rod and the effect of the shock absorber, the correction amount for the analysis value in SRAC code due to the shape effect of the control rod, is -0.05%$$Delta$$k/k in reactivity, and -3 mm in the critical control rod position at low temperature criticality.

Oral presentation

Study on tritium production for initial fusion reactor using high temperature gas cooled reactor; Improvement of the tritium containment performance by concentrating Li compound

Nakaya, Hiroyuki*; Matsuura, Hideaki*; Kawamoto, Yasuko*; Nagasumi, Satoru*; Katayama, Kazunari*; Goto, Minoru; Nakagawa, Shigeaki

no journal, , 

We proposed the used of High Temperature Gas-cooled Reactors (HTGR) as a tritium production device, which produces tritium by $$^{6}$$Li(n,$$alpha$$)T reaction, for initial fusion reactors. Concentrating of $$^{6}$$Li suppresses undesirable leakage of produced tritium into reactor coolant. In this study, the effect of $$^{6}$$Li concentration difference on the amount of the tritium leakage and the tritium production efficiency was investigated.

Oral presentation

Tritium production and containment performance of lithium rod test module for high temperature gas-cooled reactor

Ida, Yuma*; Matsuura, Hideaki*; Nagasumi, Satoru*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki

no journal, , 

JAEA and Kyushu University have studied the tritium production method using high temperature gas-cooled reactors (HTGR) for initial fusion reactors. In this method, lithium compounds are loaded into the reactor core and tritium is produced with $$^{6}$$Li(n,$$alpha$$)T reaction. We studied about optimization of lithium loading method, effective tritium containment method and nuclear thermal design of lithium loaded HTGR, and consequently we confirmed the feasibility of the tritium production method. Then, we started preliminary study for lithium irradiation experiment by test reactors. This paper describes evaluation results of tritium production and tritium containment for proposed lithium irradiation capsule.

Oral presentation

Study on lithium rod test module and irradiation method of tritium production using high temperature gas-cooled reactor; Evaluation of test module with Zr layer

Ida, Yuma*; Matsuura, Hideaki*; Nagasumi, Satoru*; Koga, Yuki*; Okamoto, Ryo*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo

no journal, , 

Tritium production method using HTGRs (High Temperature Gas-cooled reactors) is studied as the tritium supplying method for initial D-T fusion reactors. In this method, tritium is produced by $$^{6}$$Li (n,$$alpha$$)T reaction. The amount of tritium production and the tritium confinement capability were evaluated in case of the irradiation capsule including the Li compound is installed into the HTGRs in the past. In this study, the tritium confinement capability is evaluated for the irradiation capsule with ZrC layer by performing calculations of the amount of tritium leakage. The calculation results showed that the amount of tritium leakage is decreased to one fifth with the ZrC layer.

Oral presentation

Study on tritium confinement method using Li rod with Zr in very high temperature gas-cooled reactor; Hydrogen storage properties of Zr in high temperature (700$$sim$$850$$^{circ}$$C) conditions

Okamoto, Ryo*; Matsuura, Hideaki*; Ida, Yuma*; Koga, Yuki*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; Nagasumi, Satoru; et al.

no journal, , 

Currently, many researches to achieve DT nuclear-fusion power generation are under proceeding but the method to provide initial tritium loaded to fusion prototype reactor is not clear. The method of tritium production by using high temperature gas-cooled reactor (HTGR) was proposed. In this method, lithium rods are loaded to the reactor core of HTGR and tritium is produced by $$^{6}$$Li(n,$$alpha$$)T reaction. And the method to reduce the spilled tritium by using the lithium rod with zirconium layer was proposed. In this study, the experiments to evaluate the performance of hydrogen absorption in the zirconium layer were conducted under the temperature condition more than 700$$^{circ}$$C which is the normal operation condition for the very high temperature gas-cooled reactor (VHTR). The experimental result concerning solubility and diffusion factor of hydrogen in the zirconium layer will be presented and discussed.

Oral presentation

The Study on lithium rod test module and irradiation method for tritium production using high temperature gas-cooled reactor

Ida, Yuma*; Matsuura, Hideaki*; Nagasumi, Satoru; Okamoto, Ryo*; Koga, Yuki*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; et al.

no journal, , 

Large quantity of tritium is demanded for starting up of fusion reactor and engineering test using tritium for fusion blanket system. However, tritium is very rare and kg order of tritium must be produced artificially. Tritium production, by $$^{6}$$Li(n,$$alpha$$)T reaction using the high temperature gas-cooled reactor (HTGR), has been proposed. In this method, loading of Li rods into burnable poison (BP) holes in HTGR is considered. In this paper, the Li rod suited to the demand for the utilization in High Temperature engineering Test Reactor (HTTR) is designed, and tritium production and leakage from Li-rod capsule are evaluated by adjusting the thickness of LiAlO$$_{2}$$, alumina, and Zr layers. A scenario of irradiation test supposed to be conducted at HTTR for demonstration of the tritium production and containment performance of the Li rod is presented.

Oral presentation

Study on tritium confinement method using Li rod with Zr in HTGR; Hydrogen absorption properties of Zr in high temperature (700-900$$^{circ}$$C) conditions

Okamoto, Ryo*; Matsuura, Hideaki*; Ida, Yuma*; Koga, Yuki*; Suganuma, Takuro*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; et al.

no journal, , 

It has been proposed that lithium rods, which are cylindrical lithium compounds, are loaded into a HTGR and tritium for initial fusion reactors is produced by $$^{6}$$Li(n,$$alpha$$)T reaction. In this study, it was discussed that the lithium rods are covered with zirconium layers to prevent the produced tritium leak. The solubility and diffusion coefficient of hydrogen in zirconium were measured and the effectiveness of the zirconium layers on prevention of tritium leakage was estimated with the measured values. As a result, the tritium leakage ratio with the zirconium layers was estimated two orders lower than that without the zirconium layers, and hence it was considered that the zirconium layer is very effective on the prevention of the tritium leakage.

Oral presentation

Study on lithium rod module and irradiation method for tritium production using high temperature gas-cooled reactor

Koga, Yuki*; Matsuura, Hideaki*; Okamoto, Ryo*; Ida, Yuma*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; Nagasumi, Satoru; et al.

no journal, , 

Large quantity of tritium is demanded for starting up of fusion reactor and engineering test using tritium for fusion blanket system. Tritium production, by $$^{6}$$Li(n, $$alpha$$)T reaction using the high temperature gas-cooled reactor (HTGR), has been proposed and the method to produce tritium by loading the lithium rods as burnable poison in the reactor core has been studied. In this presentation, the design of lithium rods to be loaded to High Temperature engineering Test Reactor (HTTR) and its irradiation test plan to demonstrate tritium production are presented.

Oral presentation

The Influence of hydrogen absorption performance of Zr on tritium confinement properties of Li rod in HTGR

Okamoto, Ryo*; Matsuura, Hideaki*; Ida, Yuma*; Koga, Yuki*; Katayama, Kazunari*; Otsuka, Teppei*; Goto, Minoru; Nakagawa, Shigeaki; Ishitsuka, Etsuo; Nagasumi, Satoru

no journal, , 

A study on tritium production using a high-temperature gas-cooled reactor has been carried out and it was proposed that zirconium is loaded into the lithium irradiation capsule to confine tritium within the irradiation capsule under high temperature condition. In this study, zirconium loading method was examined by numerical calculations to improve the tritium confinement. As a result, it was found that improvement in the tritium confinement can be expected by loading spherical zirconium into the irradiation capsule.

Oral presentation

Effect of detail control rod model in HTTR at MVP calculation

Matsunaka, Kazuaki*; Fujimoto, Nozomu*; Nagasumi, Satoru; Ishii, Toshiaki; Ishitsuka, Etsuo

no journal, , 

no abstracts in English

Oral presentation

Study on neutron spectrum in HTTR at MVP burnup calculation

Matsunaka, Kazuaki*; Fujimoto, Nozomu*; Ishii, Toshiaki; Nagasumi, Satoru; Ishitsuka, Etsuo

no journal, , 

no abstracts in English

Oral presentation

Calculation of 3D neutron flux distribution in the HTTR using MCNP6

Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Ishii, Toshiaki; Nagasumi, Satoru; Ishitsuka, Etsuo

no journal, , 

Oral presentation

Evaluation of detailed thermal neutron flux distribution in graphite-moderated reactor by Monte-Carlo code

Nakagawa, Naoki*; Fujimoto, Nozomu*; Ho, H. Q.; Hamamoto, Shimpei; Nagasumi, Satoru; Ishitsuka, Etsuo

no journal, , 

no abstracts in English

35 (Records 1-20 displayed on this page)