Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tomioka, Dai; Kochiyama, Mami; Ozone, Kenji; Nakata, Hisakazu; Sakai, Akihiro
JAEA-Technology 2024-023, 38 Pages, 2025/03
Japan Atomic Energy Agency is an implementing organization of near-surface disposal for low-level radioactive wastes generated from research, industrial and medical facilities in Japan. Information on the radioactivity concentration of these radioactive wastes is dispensable for the design and conformity assessment of the waste disposal facilities for the licensing application of the disposal project and its safety review. Radioactive Wastes Disposal Center has been improving the radioactivity evaluation procedure for the dismantling waste generated from the research reactors based on the activation calculation. In order to investigate the applicability of the ORIGEN code (included in SCALE6.2.4), which enables more accurate activation calculations using multigroup neutron spectra, we performed activation calculations with the ORIGEN-code and the ORIGEN-S code (included in SCALE6.0), which has been widely used in the past, for the dismantled wastes from the Rikkyo University Research Reactor, where radioactivity analysis data for the structural materials around the reactor core were compiled. As a result, the calculation time difference between ORIGEN and ORIGEN-S was small and the evaluated radioactivity concentrations of the former were in the range of 0.8-1.0 times those of the latter, which was in good agreement with those of radiochemical analysis in the range of 0.5-3.0 times. The applicability of ORIGEN was confirmed. In addition, activation calculations assuming trace elements in structural materials of nuclear reactor were performed with ORIGEN and ORIGEN-S and the results were compared. The causes of the large differences among 170 nuclides that are important for dose assessment in near-surface disposal were assessed each nuclide.
Nagata, Hiroshi; Kochiyama, Mami; Chinone, Marina; Sugaya, Naoto; Nishimura, Arashi; Ishikawa, Joji; Sakai, Akihiro; Ide, Hiroshi
JAEA-Data/Code 2024-016, 44 Pages, 2025/03
The elemental composition of the structural materials of nuclear reactor facilities is used as one of the important parameters in activation calculations that are evaluated when formulating decommissioning plans. Regarding the elemental composition of aluminum alloys and other materials used as structural materials for test and research reactors, sufficient data is not available regarding elements other than the major elements. For this reason, samples were collected from aluminum alloy, beryllium, hafnium, and other materials that have been used as the main structural materials of JMTR (Japan Materials Testing Reactor), and their elemental compositions were analyzed. This report summarizes the elemental composition data of 78 elements obtained in FY2023.
Nakata, Hisakazu; Izumo, Sari; Okada, Shota; Sakai, Akihiro
JAEA-Technology 2024-010, 65 Pages, 2024/10
Japan Atomic Energy Agency plans to install a trench disposal facility for waste generated from research, industrial and medical facilities. The technical standards for the facility, which are stipulated by the rule of Nuclear Regulation Authority, state that "the waste disposal site shall be filled with soil and sand, etc., so that there will be no voids left after the disposal facility is closed. The voids are those that may impair safety function of the disposal site. Therefore, when storing waste to be buried in a trench disposal facility in a square steel container, it is necessary to take measures to sufficiently reduce the voids inside the container. A method of filling sandy soil to reduce the voids was investigated. Simulated waste was stored in a square steel container and silica sand was gradually filled into the gaps of the stored waste while accelerating and vibrating it using a vibrator. The void ratio was calculated for a variety of vibration condition (19 cases). The result of this sand filling test shows that it is possible to reduce the ratio of voids in the container to about 20% or less by volume, which is the provisional waste acceptance criteria. To reduce the voids in the square steel container, it is necessary to conduct a filling experiment using an actual machine and the square container to be used, to verify the fillability and the vibration condition. This paper summarized the result of filling experiment and illustrated test contents and procedures.
Iwamura, Toko; Nakata, Hisakazu; Maekawa, Keisuke; Sakai, Akihiro; Sakamoto, Yoshiaki
JAEA-Review 2024-032, 39 Pages, 2024/08
Japan Atomic Energy Agency (JAEA) is responsible for the disposal of low-level radioactive waste generated by JAEA itself and research facilities under the revised JAEA Act of 2008 and subsequently developed a "Plan for the Implementation of Disposal Operations" (implementation plan) in 2009. Furthermore, based on the results of the survey on the amount of waste generated by research facilities, the quantity of wastes for the near surface disposal was set at 600,000 in terms of 200L drums, and the results of the consideration on the conceptual design of the disposal facility were summarized in 2012. In 2018 JAEA published its long-term outlook and policy regarding back-end measures in "Back-end Roadmap", and in this "Back-end Roadmap", the amount of waste generated by JAEA was also organized and published. Therefore, the amount of waste materials from waste generators outside JAEA was re-examined, and as a result, the size of the burial facility was changed from 600,000 to 750,000 in terms of 200L drums, and approval was obtained for a change in the implementation plan. In addition, the conceptual design of the disposal facility was revised to accommodate the increased size of the facility. This report summarizes the results of the updated assumptions and disposal facility design from the 2012 conceptual design.
Nakata, Hisakazu; Okada, Shota; Amazawa, Hiroya; Sakai, Akihiro
JAEA-Technology 2023-021, 31 Pages, 2024/01
Radioactive waste packages, which Japan Atomic Energy Agency (JAEA) plans to dispose of, must meet the technical criteria specified by the Order of Nuclear Regulation Authority. One criteria is newly specified in 2019 such that it shall be impact resistant performance so as to be few in quantity of radionuclides released from the waste package in case of dropping from the maximum height assumed in the disposal process. Then, JAEA needs to prove the compliance of the waste package with the technical criteria by estimating the leakage of radionuclides. In this report, the amounts of scattering materials inside two waste packages caused by dropping impact from 8m height was estimated by numerical analysis, providing the ratio of the amounts of scattering materials to the weight of the waste package. The analysis objects were 1m cube container-filled and solidified waste package containing metal waste, which are expected to emplace into a vault-type disposal facility. Some considerations relating to the production method of the waste package using 1m
cubic container and its waste acceptance criteria are provided on the basis of the drop analysis in this report.
Ogawa, Rina; Amazawa, Hiroya; Nakata, Hisakazu; Sugaya, Toshikatsu; Sakai, Akihiro
JAEA-Review 2023-011, 116 Pages, 2023/08
Japan Atomic Energy Agency (JAEA) is the implementing agency for the disposal business of radioactive waste generated from research, industrial and medical facilities (Institutional radioactive waste). In 2010, JAEA implemented a conceptual design of the disposal facility that conformed to the laws and regulations at the time. However, since 2013, the laws and regulations for nuclear facilities including the Category-2 Waste Disposal were amended. Since then, design of various nuclear facilities including disposal facilities has been reviewed. Therefore, JAEA decided to do additional studies toward the basic design for the disposal facility. When JAEA gets a license of the disposal business of Institutional radioactive waste, it is necessary to show that the disposal facility complies with the rule of design for disposal facility under the law. Therefore, JAEA is examining technical studies of the disposal facility to conform to the new standard. In this report, we organized the requirements of the rule for design of trench disposal facility and extracted the issues to design the disposal facility that conform to the requirements.
Ogawa, Rina; Totsuka, Masayoshi*; Sakai, Akihiro
JAEA-Technology 2023-012, 57 Pages, 2023/07
Concrete vault disposal facility is assumed to be installed below the groundwater table because it is necessary to install them on the ground that has enough bearing capacity. Therefore, the flow rates of groundwater into and out of concrete vault were evaluated by taking into account the permeability coefficients of the geological environment surrounding the facility and of the engineered structure of the facility. Groundwater flow analysis was performed by using the groundwater flow analysis code MIG2DF based on finite element method. In the evaluation of considering the geological environment, since the flow rate of groundwater into and out of the bottom of concrete vault was larger than the flow rates into and out of other sides of the vault in previous technical studies, the evaluation of the flow rate was performed by varying the permeability coefficient of the bedrock adjacent to the bottom of concrete vault. In addition, the other evaluation of the flow rate was conducted assuming the deterioration of concrete vault and of bentonite-mixed soil. As a result, it was found that the permeability coefficient of bedrock adjacent to concrete vault greatly contributed to flow rates of groundwater into and out of concrete vault. In addition, as the permeability coefficient of the bentonite-mixed soil increased due to chemical deterioration, the flow rate of leachate into the surrounding cover soil increased. From the above results, it was found that these permeability coefficients were important influencing factors in the engineering design and safety evaluation of concrete vault disposal facilities.
Sakai, Akihiro
Dekomisshoningu Giho, (64), p.24 - 33, 2023/05
Japan Atomic Energy Agency (JAEA) has proceeded with the project of near surface disposal of radioactive waste generated from research facilities, etc. as the implementing body. On the other hand, Nuclear Regulation Authority (NRA) has established the safety regulations and standards for the operation of the disposal facilities. This report outlines the disposal project of JAEA and the development of the regulations and standards for the disposal by NRA.
Sakai, Akihiro
Dai-33-Kai Genshiryoku Shisetsu Dekomisshoningu Gijutsu Koza Tekisuto, p.31 - 63, 2023/02
The Japan Atomic Energy Agency (JAEA) is promoting the project for concrete-vault disposal and landfill-type disposal of radioactive waste generated from research facilities, etc. This report introduces current status of technical development for JAEA's disposal project as following items; (1) kinds of research facilities and characteristics of radioactivity inventory of the waste, (2) the structures of the disposal facilities which JAEA conceptually designed, (3) development of waste acceptance criteria for major radioactive waste for the JAEA disposal facilities, (4) the concept of the criteria for disposal of uranium bearing waste, that has been established in 2021.
Sakai, Akihiro; Kamei, Gento; Sakamoto, Yoshiaki
Nihon Genshiryoku Gakkai-Shi ATOMO, 65(1), p.25 - 29, 2023/01
Currently, radioactive waste generated from research institutes, etc. is keeping in storage facilities without being disposed of. In order to solve this problem, the Japan Atomic Energy Agency (JAEA) is proceeding with the project for concrete-pit disposal and trench disposal of these waste. This paper introduces the characteristics of the waste and disposal facilities planned by the JAEA, as well as the status of development of the siting criteria for the disposal facility.
Nakamura, Mizuki; Izumo, Sari; Ogawa, Rina; Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro
JAEA-Technology 2022-025, 73 Pages, 2022/12
Japan Atomic Energy Agency (JAEA) has been establishing as the implementing body of the near surface disposal of low-level radioactive waste (LLW) generated from research facilities and other facilities in order to actualize the near surface disposal. It is necessary to evaluate the effective doses by direct and skyshine -rays from disposal facilities and reduce the doses below the target dose (50
Sv/y) at the site boundary for the safety assessment during operation. It was shown at the results of conceptual design that the distance from the trench disposal facilities to site boundary needed to be kept more than 120m in order to satisfy the target dose. However, the design of trench disposal facilities was changed because of increasing amount of waste subject to the trench disposal. Therefore, the dose by skyshine
-rays from trench disposal facilities was recalculated by use of two-dimensional discrete ordinates Sn code DOT 3.5. As a result, it was evaluated that the dose by skyshine
-rays from each trench facility at the site boundary whose distance was 120m from a trench facility was lower than 50
Sv/y, respectively, and the dose added up the doses from trench facilities was also lower than 50
Sv/y. In addition, it was suggested to reduce the target skyshine dose by thickening the covered soil on the top layer.
Okada, Shota; Murakami, Masashi; Kochiyama, Mami; Izumo, Sari; Sakai, Akihiro
JAEA-Testing 2022-002, 66 Pages, 2022/08
Japan Atomic Energy Agency is an implementing organization of burial disposal for low-level radioactive waste generated from research, industrial and medical facilities in Japan. Radioactivity concentrations of the waste are essential information for design of the disposal facility and for licensing process. A lot of the waste subjected to the burial disposal is arising from dismantling of nuclear facilities. Radioactive Wastes Disposal enter has therefore discussed a procedure to evaluate the radioactivity concentrations by theoretical calculation for waste arising from the dismantling of the research reactors facilities and summarized the common procedure. The procedure includes evaluation of radioactive inventory by activation calculation, validation of the calculation results, and determination of the disposal classification as well as organization of the data on total radioactivity and maximum radioactivity concentration for each classification. For the evaluation of radioactive inventory, neutron flux and energy spectra are calculated at each region in the reactor facility using two- or three-dimensional neutron transport code. The activation calculation is then conducted for 140 nuclides using the results of neutron transport calculation and an activation calculation code. The recommended codes in this report for neutron transport calculation are two-dimensional discrete ordinate code DORT, three-dimensional discrete ordinate code TORT, or Monte Carlo codes MCNP and PHITS, and for activation calculation is ORIGEN-S. Other recommendation of cross-section libraries and calculation conditions are also indicated in this report. In the course of the establishment of the procedure, Radioactive Wastes Disposal Center has discussed the commonly available procedure at meetings. It has periodically held to exchange information with external operators which have research reactor facilities. The procedure will properly be reviewed and be revised by reflecting future situ
Sakuma, Kota; Abe, Daichi*; Okada, Shota; Sugaya, Toshikatsu; Nakata, Hisakazu; Sakai, Akihiro
JAEA-Technology 2022-013, 200 Pages, 2022/08
Japan Atomic Energy Agency has aims to carry out near surface disposal of low-level radioactive waste generated from research, medical, and industrial facilities. Therefore, Radioactivity Concentration Corresponding to Dose Criterion for near surface disposal for nuclides in the waste were calculated for the purpose of discussion for radioactivity limits between trench and concrete vault disposal, and key nuclides related to them. This report uses the results of sensitivity analysis and evaluation of the amount of leachate from the disposal facility for concrete vault disposal, and incorporates a new assessment pathway and exposure form that widely assume the conditions of the disposal facility. This trial calculation was carried out and compared with the trial calculation in the previous report, "Evaluation of Radioactivity Concentration Corresponding to Dose Criterion for Near Surface Disposal of Radioactive Waste Generated from Research, Medical, and Industrial Facilities, Volume 1". The results of Radioactivity Concentration Corresponding to Dose Criterion calculated in this report will be used as reference values when selecting key nuclides and for classification into concrete vault disposal when the location has not been decided. After deciding the location of the site, it is necessary to evaluate the dose based on the location conditions.
Ogawa, Rina; Nakata, Hisakazu; Sugaya, Toshikatsu; Sakai, Akihiro
JAEA-Technology 2022-010, 54 Pages, 2022/07
Japan Atomic Energy Agency has considered trench disposal as one of the disposal methods for radioactive wastes generated from research facilities and other facilities. The trench disposal facility is regulated by "Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors". In particular, the design of the trench facility is regulated by a rule under the law. When the rule was amended in 2019, the design of the trench disposal facility required equipment to reduce ingress of rain water and groundwater. In the report, studies on the design of a trench disposal facility to adapt to the amended rule were performed. The trench disposal facility has considered being established in a place lower than groundwater level. Therefore, it was decided to study covering soil at the upper part of the trench facility, because the ingress water in the facility is mainly derived from rain water. In this study, it was decided to evaluate the design of covering soil of the radioactive waste categorized into chemically stable materials. Therefore, as the examination method, a parameter study on varying the permeability coefficient and thickness of the layers composing cover soil. In the parameter study, the velocity of the water infiltrating into the trench facility was evaluated. Based on the results, more efficient design of the layers composing the covering soil was considered. The result showed that the impermeable efficiency of the covering soil was different depending on the thickness and the permeability conductivity of each layer. As a result, it was possible to understand the impermeable performance of covering soil by the permeability coefficient and thickness of each layer. We will plan to decide the specification of the cover soil while examination of future tasks and cost in the basic design.
Kochiyama, Mami; Sakai, Akihiro
JAEA-Technology 2022-009, 56 Pages, 2022/06
It is necessary to evaluate radioactivity inventory in wastes before disposal of low-level radioactive wastes generated from dismantling research reactors. It is efficient for owners of each research reactor to use a common radioactive evaluation method in order to comply with the license application for disposal facility. In this report, neutron transport and activation calculations were carried out for the Rikkyo University research reactor in order to examine a common radioactivity evaluation method for burial disposal of radioactive wastes generated by dismantling. We adopted the neutron transport codes DORT and MCNP and the activation code ORIGEN-S with cross-section libraries based on JENDL-4.0 and JENDL/AD-2017. The radioactivity concentrations obtained by the radiochemical analysis and both calculation codes were in agreement by 0.4 to 3 times. Therefore, by appropriately considering this difference, the radioactivity evaluation method by DORT, MCNP and ORIGEN-S can be applied to the radioactivity evaluation for buried disposal. In order to classify wastes from dismantling by clearance or buried disposal method according to their radioactivity levels, we also created radioactivity concentration distributions in the concrete area and graphite thermal column area.
Sakai, Akihiro
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(1), p.48 - 54, 2022/06
no abstracts in English
Ogawa, Rina; Abe, Daichi*; Sugaya, Toshikatsu; Sakuma, Kota; Saito, Tatsuo; Sakai, Akihiro
JAEA-Technology 2022-008, 46 Pages, 2022/05
Japan Atomic Energy Agency (JAEA) has planned to dispose of the Uranium-bearing waste, whose radioactivity concentration is low, in trench disposal facility. In Japan, uranium is a material to impact on human health, therefore Environmental quality standards for water pollution for uranium has been established, and the standard value is 0.002mg/L. Safety of trench disposal facilities will be assessed that radionuclides contained in the radioactive waste are transferred to the biosphere by seepage water and groundwater. Therefore, JAEA considers that not only dose evaluation but also environmental pollution evaluation is needed as a safety assessment. In this report, we examined whether the concentration of uranium leaching from the trench facility in the aquifer can meet the Environmental quality standards. In addition, parameter study under various conditions of disposal facility were done. Based on the results, conditions and issues of future basic design of trench disposal facility were discussed. The uranium concentration in the aquifer was calculated by the one-dimensional dose evaluation code "GSA-GCL2" for the disposal of LLW. As the result, the uranium concentration in the aquifer significantly changed depending on the conditions of design of disposal facility and so on. However, if the shape and arrangement of the trench facility to groundwater flow direction, the distribution coefficient of uranium of the waste layer, the specification of the impermeable layer and their combination are appropriately designed we consider that the uranium concentration of aquifer can made to adapt the environmental quality standard.
Yokozuka, Yuta; Sunaoshi, Mizuho*; Sakai, Tatsuya; Fujikura, Toshiki; Handa, Yuichi; Muraguchi, Yoshinori; Mimura, Ryuji; Terunuma, Akihiro
JAEA-Technology 2021-037, 44 Pages, 2022/03
JAEA has dismantled equipment and instrument in the JAERI's Reprocessing Test Facility (JRTF) since 1996 as a part of its decommissioning. Starting in JFY 2007, in the annex building B which stored liquid waste generated in wet reprocessing tests, the liquid waste storage tank LV-1 installed in the LV-1 room of the first basement was dismantled with the in-situ dismantling method. The dismantling work is described in this report. Data on manpower, radiation control, and waste in the preparation work were collected, and its work efficiency was analyzed.
Higuchi, Kyoko*; Kurita, Keisuke; Sakai, Takuro; Suzui, Nobuo*; Sasaki, Minori*; Katori, Maya*; Wakabayashi, Yuna*; Majima, Yuta*; Saito, Akihiro*; Oyama, Takuji*; et al.
Plants (Internet), 11(6), p.817_1 - 817_11, 2022/03
Times Cited Count:3 Percentile:27.04(Plant Sciences)Genetic diversity in the rate of Fe uptake by plants has not been broadly surveyed among plant species or genotypes, although plants have developed various Fe acquisition mechanisms. We adopted the "Live-autoradiography" technique with radioactive Fe to directly evaluate the uptake rate of Fe by barley cultivars from a nutrient solution containing a very low concentration of Fe. Our observations revealed that the ability to acquire Fe from the low Fe solution was not always the sole determinant of tolerance to Fe deficiency among the barley genotypes.
Kochiyama, Mami; Okada, Shota; Sakai, Akihiro
JAEA-Technology 2021-010, 61 Pages, 2021/07
It is necessary to evaluate the radioactivity inventory in wastes in order to dispose of radioactive wastes generated from dismantling nuclear reactor in the shallow ground. In this report, we examined radioactivity evaluation method for near surface disposal about biological shield concrete near the core generated from the dismantling of JPDR. We calculated radioactive concentration of the target biological concrete using the DORT code and the ORIGEN-S code, and we estimated radioactivity concentration Di (Bq/t). For DORT calculation, the cross-section library created from the MATXSLIB-J40 file from JENDL-4.0 was used, and for ORIGEN-S, the attached library of SCALE6.0 was used. As a result of comparing the calculation results of the radioactivity concentration with the past measured values in the radial direction and the vertical direction, we found that the trends were generally the same. We calculated radioactive concentration of the target biological concrete Di (Bq/t), and we compared with the estimated Ci (Bq/t) equivalent to the dose criteria of trench disposal calculated for 140 nuclides. As a result we inferred that the except for about 2% of target waste could be disposed of in the trench disposal facility. We also preselected important nuclides for trench disposal based on the ratios (Di/Ci) for each nuclide, H-3, C-14, Cl-36, Ca-41, Co-60, Sr-90, Eu-152 and Cs-137 were selected as important nuclides.