Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Assessment of the probability of aircraft crashing for HTTR

Ono, Masato; Hanawa, Yoshio; Sonobe, Hiroshi; Nishimura, Arashi; Sugaya, Naoto; Iigaki, Kazuhiko

JAEA-Technology 2020-010, 14 Pages, 2020/09

JAEA-Technology-2020-010.pdf:1.74MB

In response to new standard for regulating research and test reactor which is enforced December 18, 2013, it was carried out assessment of the probability of aircraft crashing for HTTR. According to assessment method provided in the Assessment Criteria of the Probability of Aircraft Crashing on Commercial Power Reactor Facilities, assessment was conducted targeting reactor building, spent fuel storage building and cooling tower. As a result, it was confirmed that the probability was 5.98$$times$$10$$^{-8}$$, which is lower than the assessment criteria 10$$^{-7}$$.

JAEA Reports

Validation of repairing method for concrete wall of the JMTR tank-yard building

Sugaya, Naoto; Okada, Yuji; Nishimura, Arashi; Sonobe, Hiroshi; Kimura, Nobuaki; Kimura, Akihiro; Hanawa, Yoshio; Nemoto, Hiroyoshi

JAEA-Testing 2020-004, 67 Pages, 2020/08

JAEA-Testing-2020-004.pdf:8.17MB

In the Japan Materials Testing Reactor (JMTR), the leakage accidents of radioactive waste liquid were occurred from the tanks and pipes of the liquid waste disposal facility in the JMTR tank-yard building in JFY2014. In order to respond to the accident, the tanks and pipes were replaced from JFY2016 to 2019. On the other hand, a lot of cracks were occurred on the concreate wall of the tank-yard building when the frame structure supports were fixed to the concrete wall in the replacement work. Thus, it is necessary to repair the concreate wall of the tank-yard building. Especially, some cracks with swelling (cone-shaped fracture) were raised around some anchor bolts (the post-installed chemical anchor bolts) fixed the frame structure supports. The repairing method for the cone-shaped fracture of the concrete wall is standardized, but there was no reference value of tensile strength for the validation of the post-installed chemical anchor bolts after the repairing method. In this report, the repairing method was selected for the cone-shaped fracture on the concreate wall and the reference value of tensile strength for the validation of the post-installed chemical anchor bolts by this repairing method. The mock-ups for repairing cone-shaped fracture were fabricated by the selected repairing method and the tensile tests of the post-installed chemical anchor bolts were performed. From the results, the validation of the repairing method was obtained in this test and it was obvious the repairing of cone-shaped fracture is preferable method for the concreate wall of the JMTR tank-yard building.

JAEA Reports

Progress of the research and development on the geological disposal technology of HLW with aid of the industry/university collaboration system and fixed term researcher system

Yamada, Fumitaka; Sonobe, Hitoshi; Igarashi, Hiroshi

JAEA-Review 2007-061, 67 Pages, 2008/02

JAEA-Review-2007-061.pdf:8.39MB

In JAEA, various systems associated with the collaboration with industries and universities are enacted. These systems have been operated considering the needs of JAEA's program, industry and academia, resultantly contributed, for example, to basic research and the project development. Activities under these systems contain personal exchanges, the publication of the accomplishments and utilization of those, in R&D concerning geological disposal technology of HLW. These activities have progressed in PNC and JNC, through JAEA. The accomplishments from these systems have contributed to the advancement of the national program on the geological disposal of HLW. In this report, the progress of the R&D under these systems was investigated from the beginning of their operation. The contribution to the R&D on geological disposal technology of HLW was also studied. On the basis of these studies, the future utilization of the systems of the collaboration was also discussed.

3 (Records 1-3 displayed on this page)
  • 1