Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
丸山 龍治; 山崎 大; 海老澤 徹*; 日野 正裕*; 曽山 和彦
no journal, ,
中性子スーパーミラーは、研究用原子炉や核破砕型パルス中性子源で発生する中性子を効率的に実験装置まで輸送し、さらに必要な位置で分岐及び集束させるうえで重要となる中性子光学素子である。J-PARCにおける大強度パルス中性子源等で用いられる中性子光学機器の製造のために、0.2m
の成膜可能面積をもつ大面積イオンビームスパッタ装置が導入され、これを用いてスーパーミラーの開発を行っている。スーパーミラーの高臨界角化においてはNiの全反射臨界角の6.7倍のミラーが、高反射率化においてはNiの3倍の臨界角のもので反射率85%以上のミラーがそれぞれ得られたので、これらの開発方法及び実験結果について報告する。
大井 元貴; 酒井 健二; 神永 雅紀; 加藤 崇
no journal, ,
JSNS
SNSなどのパルス中性子源では、冷減速材として液体水素が使用される。液体水素減速材の中性子特性は、水素分子のオルソ・パラ比や温度変化によって変動することが実験的に明らかになっている。特にパルス特性の変化は、加速器トリップや放射線等の影響によって否応なく変化すると予想される。このような問題に対処するために、パルス中性子源診断システムを提案する。本システムは、中性子ビームライン上に小型の中性子検出器を設置して、減速材から放出される中性子スペクトルの連続測定を行い、陽子ビーム電流値や、その他中性子源の状態と合わせて評価することで、減速材から放出される中性子特性の評価を行い、一定時間ごとの減速材内部の状態を記録することで、中性子散乱実験における入射中性子特性の違いを把握することができる。さらに、加速器や中性子源施設の運転情報と減速材内部の情報の時系列を比較してパターン化することで、中性子特性の変化をリアルタイムで予測し、長期間の観測を続けることで、デカップラーやポイゾンの燃焼の過程を追跡することも期待される。
酒井 健二; 木下 秀孝; 甲斐 哲也; 大井 元貴; 星野 吉廣; 神永 雅紀; 加藤 崇
no journal, ,
物質・生命科学実験施設(MLF)は、ミュオンや中性子ビームを安全かつ効率よく利用者に供給する役割を要求される。その実現のために、施設内の線源設備の運転を独自に行うと同時に、加速器や他実験施設との協調制御にも対応できるMLF制御システム(MLF-GCS)の構築を進めてきた。現段階では、概要設計はほぼ終了し、MLF運転状態に基づいた施設全体や各設備の運転項目の最終検討と、それに対するMLF-GCSの役割分担の明確化を進めている。本発表では、MLF-GCSの概要と構築現状について報告する。
N
微粒子の偏極中性子回折法による磁気形状因子の測定石井 佑弥; 老谷 聖樹; 武田 全康; 加倉井 和久; 菊池 隆之; 奥 隆之; 篠原 武尚; 鈴木 淳市; 佐々木 勇治*; 岸本 幹雄*; et al.
no journal, ,
現在使用されている磁気テープ材料は粒径100nm程度の針状メタルが使用されているが、さらに高容量化・高密度化のために微細化又は球状化が必要である。窒化鉄Fe
N
は最近20nm程度の球状試料が得られるようになり、次世代の磁気テープ材料として有望である。ところが、一般的に強磁性体が微粒子状になると熱振動により自発磁化が減少し、磁気モーメントの値が小さくなることが知られている(超常磁性)。さらに、磁気テープ材料としてのFe
N
は酸化防止のためラミネート層を持っており、通常の磁気測定法では正確な磁化の値を決めることが難しい。そこでFe
N
微粒子の正確な磁気モーメントの大きさを決定するために、偏極中性子回折法を用いた磁気形状因子の測定を行った。実験は試料に1Tの磁場をかけて磁化を飽和させて行った。スピンフリッパーを用いて飽和磁化と中性子スピンの向きを平行(ON)/反平行(OFF)にすることで回折強度に差が現れる。もし結晶構造因子が既知であれば、ON/OFFの各ピークでの反転比(flipping ratio)を測定することで磁気形状因子を求めることができる。
鉄及びCoFeの磁気形状因子の測定老谷 聖樹; 石井 佑弥; 武田 全康; 加倉井 和久; 菊池 隆之; 奥 隆之; 篠原 武尚; 鈴木 淳市; 横山 淳*; 西原 美一*; et al.
no journal, ,
磁気テープへの応用という観点から、強磁性微粒子に対する注目が集まっている。偏極中性子回折法は微粒子の磁化を決定するのに有望と思われるが、これまであまり例のない粉末に対する偏極中性子回折実験を行い、磁気形状因子を測定し、磁化を決定した。試料として典型的な強磁性体である
鉄と、磁気テープとして既に実用化されているCoFeの微粒子を選んだ。実験では、試料に10kOeの磁場を散乱ベクトルに垂直にかけ、試料の磁化を飽和させた。偏極中性子回折では磁化ベクトルと中性子スピンの向きが平行か反平行かで回折強度に差が現れる。その回折ピークの反転比Rを測定することで、結晶の(原子核)構造因子が既知であれば、磁気形状因子を求めることができる。一般に回折強度は、装置の分解能や試料の形状などによる補正を受けるが、反転比Rではそのような補正係数が打ち消され、測定精度はほとんど統計誤差のみとなり磁気形状因子を精度よく求めることができる。この実験により、純鉄の磁化が、ほぼ文献値の2.15Tであることが確かめられた。偏極中性子粉末回折法による磁気構造解析の有用性、及びその信頼性についてCoFeの結果も併せて報告する。
朝岡 秀人; 武田 全康; 山崎 大; 山崎 竜也; 田口 富嗣; 社本 真一; 鳥飼 直也*
no journal, ,
SrTiO
のテンプレートとなるSrやSrO薄膜と、Si基板との格子不整合の緩衝域として水素単原子によるバッファー層を挿入し、12%の格子不整合を克服した薄膜成長に成功した。本研究では、埋もれた微小領域の水素界面層を実測する目的で、水素界面層を重水素に置換し中性子に対するコントラストを変化させ、解析精度を上げた中性子反射率測定を行うとともに、多重内部反射赤外分光(MIR-FTIR)法を用いたその場観察による基板直上の埋もれた水素・重水素界面での原子振動・結合状態の精密評価や、透過型電子顕微鏡(TEM)による不整合界面の構造評価を行っている。これら複合的な手法による埋もれた界面解析の試みを紹介する。
Sb
におけるラットリングの可視化金子 耕士; 目時 直人; 木村 宏之*; 野田 幸男*; 松田 達磨; 神木 正史*
no journal, ,
大きなカゴに内包された原子が示す特異な熱振動「ラットリング」が、カゴ状構造を持つスクッテルダイト化合物PrOs
Sb
における非磁性の重い電子系超伝導の発現に重要な役割を担っていると報告された。原子核により散乱される中性子は、熱振動の検出に高い感度を有している。そこで中性子回折により詳細な構造を調べた。単結晶中性子回折実験は、3号炉に設置された4軸回折装置 FONDERで行った。最小二乗法による構造解析から、室温でのPrの熱振動パラメーターが他の構成元素と比べて5倍以上と非常に大きく、平均変位で0.2
に及ぶことを明らかにした。異方性などの詳細を調べる目的で、PRIMAを用いた最大エントロピー法(MEM)による解析を行った結果、空間的に大きく拡がるPrの核度密度分布が、
111
方向に伸びた異方性を有していることを明らかにした。さらに最大密度が、オフセンター位置にあることを見いだした。一方で低温の8Kでは、Os, Sbと比較してその分布は拡がってはいるが、分解能の範囲で異方性はなく、重心がカゴの中心にあることを明らかにした。
石垣 徹; 星川 晃範; 米村 雅雄*; 神山 崇*; 森 一広*; 茂筑 高士*; 相澤 一也; 新井 正敏; 江幡 一弘*; 高野 佳樹*; et al.
no journal, ,
茨城県はJ-PARCの産業利用を推進することを目的として、汎用型粉末散乱装置(茨城県材料構造解析装置)を建設することを決定した。この回折計はハイスループット回折装置として考えられており、材料の開発・研究者は、この装置を材料の開発過程の中で化学分析装置のように手軽に用いることが可能である。この装置は、背面バンクで0.18
d(
)
5の
範囲を分解能
%で測定することが可能であり、5
d(
)
800の
範囲については徐々に変化する分解能でカバーしている。リートベルト解析が可能なデータを測定するための標準的な測定時間は実験室X線装置程度の量で数分である。産業利用を促進するためには、利用システムの整備が必要である。装置の建設は、既に開始されており、2008年には、J-PARCのデイワン装置の一つとして完成の予定である。今回は装置の建設状況についての報告を行う。
目時 直人; 金子 耕士
no journal, ,
平成18年度よりJRR-3ガイドホールのT2-3ビームポートに建設された多目的単色熱中性子ビームポート「武蔵」の目的,ビームポートの概要,装置の現状,今年度の実績について報告する。「武蔵」は2本のビームポートを持ち、長期の準備を要し、技術的に困難な実験に潤沢な中性子ビームを割り当てるとともに、J-PARCの建設に必要な検出器,中性子光学デバイスの開発,残留応力解析など産業利用-トライアルユースに使用される。本年度は低角高角二本のビームポート及び付属回折計が順調に立ち上がり、極端条件実験が開始された。また、多くの種類の検出器のテスト、開発、校正などにもビームを提供した。さらに付属回折計を残留応力解析装置RESA-IIとして提供し、施設供用、トライアルユースも開始された。来年度以降も多くのユーザーからの積極的な提案に、中性子ビームをふんだんに提供していきたいと考えている。
梶本 亮一; 中島 健次; 中村 充孝; 曽山 和彦; 横尾 哲也*; 及川 健一; 新井 正敏
no journal, ,
4次元空間中性子探査装置(4SEASONS、四季)は大強度陽子加速器(J-PARC)の核破砕中性子研究施設に建設されるチョッパー型非弾性散乱装置の一つである。この装置での減速材-試料間の距離(
)は18m、入射中性子のエネルギー範囲は5-300meVであるが、試料位置での中性子線束を増強するために減速材-試料間に収束形状の中性子スーパーミラー・ガイド管を備える予定である。本研究ではMcStasによるモンテカルロ・シミュレーションなどにより、ガイド管のデザインについて検討した。その結果、楕円形状のガイド管配置をとることにより、上記の広いエネルギー範囲にわたって十分な強度ゲインが得られることがわかった。
Y
MnO
の電気分極と磁気構造梶本 亮一; 横尾 哲也*; 古府 麻衣子*; 野田 耕平*; 桑原 英樹*
no journal, ,
MnO
は長周期磁気秩序相で強誘電性を示すことで最近注目されているが、その多くでは自発電気分極
は長周期磁気秩序がらせん秩序となる時に出現している。Eu
Y
MnO
は
K以下で反強磁性転移を示す。
K以下で
軸に平行な自発電気分極が生じるが、その向きは
K以下で
軸方向へと変化する。この電気分極の変化と磁気構造の関係を実験的に調べるためにEu
Y
MnO
の単結晶試料に対して中性子回折実験を行った。磁気反射は
,
の位置に観測された。散乱ベクトル
が
軸にほぼ平行な
と
軸にほぼ平行な
の2つの磁気反射強度の温度変化の比較から磁気構造の変化を考察した。両者ともに
,
で変化が見られ、
の向きの変化に対応してスピンの向きが変化していることがわかった。らせん秩序及びサイン波秩序を仮定したモデルを元に2つの磁気反射強度を解析し、
の向きとの関係について考察した。
CoO
の水和物の超伝導と磁性茂吉 武人*; 横井 麻衣*; 左右田 稔*; 安井 幸夫*; 小林 義明*; 佐藤 正俊*; 井川 直樹; 加倉井 和久
no journal, ,
Na
CoO

H
Oの超伝導発現機構の解明を目指し、中性子散乱や核磁気共鳴(NMR)等を主手段として基礎物性を調べた。NMRのナイトシフトは臨界温度以下でCoO
面に平行,垂直どちらにかけても減少することから、超伝導電子対の対象性がsingletであることが明らかになり、単結晶を用いた中性子非弾性散乱実験の結果からCoO
面内強磁性の揺らぎは非常に小さいことがわかった。また、粉末中性子回折実験結果から水分子による散漫散乱が観察され、また組成によって00
反射の強度比に違いが見られた。これらの結果から超伝導発現に対する水分子やその秩序の役割について発表する。
鈴木 淳市; 篠原 武尚; 奥 隆之; 清水 裕彦; Pynn, R.*
no journal, ,
われわれはこれまでに磁気屈折集光素子(磁気レンズ)を開発し、単色ビームを利用する集光型偏極中性子小角散乱装置への応用に成功してきたが、現在、この磁気レンズの白色中性子への応用研究に取り組んでいる。磁気レンズは、ビーム経路に物質を有しないので余計な散乱や吸収がない、得られる集光ビームが偏極ビームである、直線配置できる等の利点があるが、ビーム経路に物質を有しない点や直線配置性はBragg条件を満足する最長波長以下の短波長中性子を含む白色中性子利用にとって重要な利点となる。われわれは白色中性子を集光するために飛行時間法と組合せて磁気レンズ内部に発生する磁場勾配を時間的に変化させる方法と磁気レンズの有効長を時間的に変化させる方法の開発に取り組み、最近、その原理実証実験に成功した。また、パルス中性子小角散乱法への応用の可能性の追求も進めており、長波長帯域だけでなく短波長帯域の中性子の集光が、広波長帯域の中性子の同時利用による利得の向上をq分解能の低下なく実現するために極めて有効であることを確認した。
藤井 保彦
no journal, ,
日本中性子科学会第4回功績賞受賞講演として、受賞理由である「中性子,放射光による構造相転移の解明と、日本中性子科学会設立及び中性子科学発展への貢献」を反映した。これまでの講演者の研究の紹介と中性子コミュニティー組織化の活動を紹介した。
及川 健一; 前川 藤夫; 原田 正英; 甲斐 哲也; 酒井 健二; 明午 伸一郎; 春日井 好己; 勅使河原 誠; 大井 元貴; 加藤 崇; et al.
no journal, ,
パルス核破砕中性子源JSNSの出力は、既存の核破砕中性子源の出力を約1桁上回り、試運転を開始した米国SNS(定格2MW)と並び、世界で初めてのMWクラスパルス核破砕中性子源となる。JSNSを安定かつ安全に運転し、ユーザーに高品質,大強度の中性子ビームを提供することが使命となる。そこで、中性子源施設として独自の中性子ビームラインを所有し、自ら責任を持って中性子ビームの質を把握し、より良い中性子ビームの提供を目指すために、中性子源特性試験装置(英語名:NeutrOn Beam-line for Observation and Research Use、略称:NOBORU)を建設する。本装置では「高品質大強度中性子ビーム提供のための中性子源特性測定」を行い、(1)各種運転パラメータと中性子ビームの相関把握,(2)ユーザーに対する中性子ビーム情報提供,(3)中性子源構成機器の健全性確認,(4)中性子源設計の妥当性検証,(5)測定手法開発を行って行く。
甲斐 哲也; 原田 正英; 勅使河原 誠; 鬼柳 善明*; 渡辺 昇*
no journal, ,
現在、J-PARC計画の主要施設の一つとして、1MW核破砕中性子源の建設が進められている。本発表では、中性子源に設置される3種類のモデレータのうち、パルスピーク強度と時間積分強度が高い中性子を得ることを優先して設計された結合型水素モデレータについて、その特長を紹介する。主な特長として時間積分強度空間分布が周辺部で大きくなるという点,円筒形状の採用により時間積分強度は直方型と同程度で、パルスピーク強度が向上される点について、報告する。
武田 全康; 加倉井 和久; 壬生 攻*
no journal, ,
非磁性原子であるSnの単原子層を周期的に挿入したCr(001)/Sn多層膜では、Cr元素が固有に持つフェルミ面のネスティング効果と、Snを挿入したことによる人工的な周期的境界条件との競合によって、バルクとは異なるスピン密度波(SDW)が誘起される。最も大きな特徴は、Sn層によるCrの磁気モーメントのピンニング効果によって、SDWの腹がSnの位置に固定されることである。一方で、本質的にCrのSDWの波長を決定するネスティングベクトルの大きさは温度変化をするため、両者の競合により、SDWの波長が温度変化により不連続に変わること(Phase slip transition)が期待される。10.2nmの人工周期をもつCr/Sn多層膜について、JRR-3のTAS-1とTAS-2分光器を使ってこの相転移の詳細を調べたので、その実験の詳細と結果を報告する。
Si同位体濃縮薄膜山田 洋一; 山本 博之; 大場 弘則; 笹瀬 雅人*; 江坂 文孝; 山口 憲司; 鵜殿 治彦*; 社本 真一; 横山 淳; 北條 喜一
no journal, ,
シリコン同位体
Siは中性子照射により
Pに核変換することからドーパントとして機能することが知られている。本研究ではこの現象を応用し、原子力機構において開発された高効率な同位体濃縮法により得られた
Si濃縮SiF
(
Si:
30%)を原料として
Si濃縮薄膜を作製し、高精度ドーピング手法の開発を目指した。作製した薄膜の質量分析の結果から原料とほぼ同じ同位体組成であることを明らかにした。これらの結果と併せて薄膜及び界面の構造,中性子照射に伴う電気特性の変化についても議論する。
大原 高志; 栗原 和男; 日下 勝弘; 細谷 孝明; 田中 伊知朗*; 新村 信雄*; 尾関 智二*; 相澤 一也; 森井 幸生; 新井 正敏; et al.
no journal, ,
茨城県生命物質構造解析装置は、J-PARCの物質生命科学実験施設に設置される単結晶回折計で、生体高分子及び有機低分子の構造解析を目的とする。本装置は中性子線源からの距離が40mあり、中性子を効率的に輸送する光学系が必要不可欠である。今回、本装置の中性子光学系として、スーパーミラーガイド管を設計した。ガイドの形状のうち、水平方向には曲率半径4300mのカーブドガイドを用いることで高エネルギーの
線及び中性子線を除去し、さらに先端部のテーパードガイドで中性子を集光する。一方、垂直方向は多段階のテーパードガイドを組合せることでミラー表面での中性子の反射回数を減らし、反射による中性子の減少を抑えた。McSTAS及びIDEASを用いたモンテカルロシミュレーションによって試料位置での中性子の強度などを評価したところ、ストレートガイドを用いた場合と比較して0.7
で2倍、1.0
でも1.6倍のゲインが得られた。
Mn
O
における磁場誘起誘電相転移と格子不整合-整合磁気相転移木村 宏之*; 脇本 秀一; 鎌田 陽一*; 野田 幸男*; 加倉井 和久; 金子 耕士; 目時 直人; 近 圭一郎*
no journal, ,
Mn
O
(
rare earth, Bi, Y)は巨大電気磁気効果(CMR効果)を示す物質として知られている。CMR効果を示す物質の共通な性質として、磁気秩序と誘電秩序が共存するマルチフェロイック状態があるが、二つの秩序の微視的な相関はまだ明らかにされていない。われわれはその微視的相関を明らかにするために、磁場中中性子回折実験を行って、磁場誘起微視的磁性と誘電性との関係を調べた。その結果、磁場印加によって強誘電相が出現するHoMn
O
と、それとは逆に強誘電相が消失するErMn
O
において、誘電相転移と同時に格子不整合-整合磁気相転移が起こることを見いだした。得られた結果から誘電性と磁性の温度-磁場相図を描いてみると、誘電性及び磁性における相境界が完全に一致し、格子整合磁気相でのみ強誘電相が現れることがわかった。このことは、この系で現れる誘電相転移が磁気相転移によって引き起こされ、さらに強誘電相にとって格子整合磁気構造が必須であることを示している。