Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Iketani, Shotaro; Suzuki, Takeshi; Yokobori, Tomohiko; Sugawara, Satoshi; Yokota, Akira; Kikuchi, Genta; Muraguchi, Yoshinori; Kitahara, Masaru; Seya, Manato; Kurosawa, Tsuyoshi; et al.
JAEA-Technology 2025-001, 169 Pages, 2025/08
The radioactive waste treatment facilities at the Nuclear Science Research Institute includes the Radioactive Waste Treatment Facility No. 3, Waste Size Reduction and Storage Facility, and Waste Volume Reduction Facility. These three facilities come under the purview of the Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors, and are included under Class C of the act based on the seismic requirements specified in the Act. We assessed the seismic capacity of these three radioactive waste treatment facilities based on the current Building Standards Act, to verify whether they comply with the new regulatory requirements enforced by the Nuclear Regulation Authority (NRA) in the aftermath of the 2011 nuclear accident at the Fukushima Daiichi Nuclear Power Station operated by the Tokyo Electric Power Company. We found that the allowable stress of a few structural members used in the construction of the facilities did not meet the regulatory requirements. After studying the approval granted by the NRA for the construction plans, including the design and construction methods (design and construction plans) of the three facilities on March 5, 2021, we made aseismic reinforcement at these facilities between 2021 and 2022. This report presents an overview of the seismic design of these facilities and an outline of the aseismic reinforcement conducted, management system existing, safety measures adopted, and the preoperational inspections conducted at these facilities.
Yokochi, Masaru; Goto, Yuichi; Kuno, Sorato; Suzuki, Yoshimasa; Yamamoto, Masahiko; Taguchi, Shigeo; Usui, Masato*; Onose, Taku*; Miyamoto, Toshihiko*; Mori, Eito*
Nihon Hozen Gakkai Dai-21-Kai Gakujutsu Koenkai Yoshishu, 4 Pages, 2025/07
Analysis facility in Tokai Reprocessing Plant, which is shifted to decommissioning stage, have been installed about 60 Grove Boxes to handling the nuclear fuel materials. Of these, progressing an aging accompanied by long use for 20 years more than half. This time, removal the special Grove Box that equipped the Thermal Ionization Mass Spectrometry, necessary safeguard analysis for nuclear fuel materials. This report summarized the removal techniques of the special Grove Box, the number of working days, workers and amount of waste generated in this removal work.
Sano, Kyohei; Tameta, Yuito; Akuzawa, Tadashi; Kato, Soma; Takano, Yugo*; Akiyama, Kazuki
JAEA-Technology 2024-018, 68 Pages, 2025/02
High Active Solid Waste Storage Facility (HASWS) at the Tokai Reprocessing Plant (TRP) is a facility for storing highly radioactive solid waste generated from the reprocessing operation. Wet cells in HASWS store hull cans that contain fuel cladding tubes (hull) and fuel end pieces remained after the spent nuclear fuel shearing and dissolving, as well as used filters and contaminated equipment. Dry cells in HASWS store analytical waste containers that contain waste jugs and the other waste generated from analytical operation of samples in TRP. Since HASWS does not have waste recovery equipment from the cells, it is considered that recovery equipment to be installed. In the wet cells, methods of recovery wet-stored waste are being considered that utilize a ROV, which has been used in decommissioning in the UK, and a lifter, which is used in the marine industry to float and transport items sinking to the bottom of the sea. To confirm the feasibility of the recovery method that combines the functions of the ROV and the lifter, tests for removing waste were conducted in steps that came closer to the real environment: a "unit test" to confirm the functions required of each of the ROV and the lifter, a "combination test" to combine the ROV and the lifter to move waste underwater, and a "comprehensive test" to retrieve waste in an environment simulating the hull storage facility. Through this test, the ROV and the lifter were able to perform a series of tasks required to recovery waste - cutting the wires attached to the waste, attaching a lifter to the waste, moving the waste to under the opening, and attaching the recovery device to the moved waste - in series, confirming the feasibility of the method for recovery wet-stored waste using the ROV and the lifter.
Sato, Hinata; Mori, Amami; Kuno, Sorato; Horigome, Kazushi; Goto, Yuichi; Yamamoto, Masahiko; Taguchi, Shigeo
JAEA-Technology 2024-011, 56 Pages, 2024/10
Flush-out, which recovers remaining nuclear materials in the process and transfer it to a highly radioactive liquid waste storage tank, has been performed at main plant of Tokai Reprocessing Plant. The flush-out has been composed from three steps: first step is to remove of spent fuel sheared powder, second step is to collect plutonium solution stored in the process, and third step is to convert uranium solution into uranium trioxide powder. The first step of flush-out activity has been completed in 2022. Second and third steps of flush-out have been completed from March 2023 to February 2024. Process control analysis has been performed for operation of the facility, and material accountancy analysis has been performed to control the accountancy of nuclear materials. In addition, related analytical work such as pretreatment for transporting inspection samples for safeguards analysis laboratories in IAEA has been also performed. This report describes results of analytical work performed in collections of plutonium and uranium solutions in second and third steps of the flush-out, including calibration of analytical equipment, waste generation, and education and training of analytical operator.
Yamamoto, Masahiko; Horigome, Kazushi; Goto, Yuichi; Taguchi, Shigeo
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
Flush-out activities of Tokai Reprocessing Plant were completed in February, 2024. Since it contained remaining nuclear materials in main process of the facility, purpose of activities was to flush-out them and to rinse with nitric acid solution. This paper describes analysis of nuclear materials related to flush-out activities.
Yokochi, Masaru; Sasaki, Shunichi; Yanagibashi, Futoshi; Asada, Naoki; Komori, Tsuyoshi; Fujieda, Sadao; Suzuki, Hisanori; Takeuchi, Kenji; Uchida, Naoki
Nihon Hozen Gakkai Dai-20-Kai Gakujutsu Koenkai Yoshishu, p.1 - 4, 2024/08
Tokai Reprocessing Plant, which is shifted to decommissioning stage, stores large amount of high-level radioactive liquid waste (HLLW) generated by reprocessing of spent nuclear fuels in High-level Active Waste facility (HAW). Radioactive risk related to HLLW has been concentrated in HAW until the completion of vitrification. Natural disasters such as earthquake may damage cooling function of HAW. Therefore, HAW must improve earthquake resistance, as exchanging the ground around HAW facility and pipe trench by concrete. This earthquake resistance construction starts from July of 2020 and completed in March 2024. This report summarizes the construction work and describes the inspection results after the construction.
Nishino, Saki; Okada, Jumpei; Watanabe, Kazuki; Furuuchi, Yuta; Yokota, Satoru; Yada, Yuji; Kusaka, Shota; Morokado, Shiori; Nakamura, Yoshinobu
JAEA-Technology 2023-011, 39 Pages, 2023/06
Tokai Reprocessing Plant (TRP) which shifted to decommissioning phase in 2014 had nuclear fuel materials such as the spent fuel sheared powder, the diluted plutonium solution and the uranium solution in a part of the reprocessing main equipment because TRP intended to resume reprocessing operations when it suspended the operations in 2007. Therefore, we have planned to remove these nuclear materials in sequence as Flush-out before beginning the decommissioning, and conducted removal of the spent fuel sheared powder as the first stage. The spent fuel sheared powder that had accumulated in the cell of the Main Plant (MP) as a result of the spent fuel shearing process was recovered from the cell floor, the shearing machine and the distributor between April 2016 and April 2017 as part of maintenance. Removing the recovered spent fuel sheared powder was conducted between June 2022 and September 2022. In this work, the recovered powder was dissolved in nitric acid at the dissolver in a small amount in order to remove it safely and early, and the dissolved solution was sent to the highly radioactive waste storage tanks without separating uranium and plutonium. Then, the dissolved solution transfer route was rinsed with nitric acid and water. Although about 15 years had passed since previous process operations, the removing work was successfully completed without any equipment failure because of the organization of a system that combines veterans experienced the operation with young workers, careful equipment inspections, and worker education and training. Removing this powder was conducted after revising the decommissioning project and obtaining approval from the Nuclear Regulation Authority owing to operating a part of process equipment.
Watanabe, Kazuki; Kimura, Norimichi*; Okada, Jumpei; Furuuchi, Yuta; Kuwana, Hideharu*; Otani, Takehisa; Yokota, Satoru; Nakamura, Yoshinobu
JAEA-Technology 2023-010, 29 Pages, 2023/06
The Krypton Recovery Development Facility reached an intended technical target (krypton purity of over 90% and recovery rate of over 90%) by separation and rectification of krypton gas from receiving off-gas produced by the shearing and the dissolution process in the spent fuel reprocessing at the Tokai Reprocessing Plant (TRP) between 1988 and 2001. In addition, the feasibility of the technology was confirmed through immobilization test with ion-implantation in a small test vessel from 2000 to 2002, using a part of recovered krypton gas. As there were no intentions to use the remaining radioactive krypton gas in the krypton storage cylinders, we planned to release this gas by controlling the release amount from the main stack, and conducted it from February 14 to April 26, 2022. In this work, all the radioactive krypton gas in the cylinders (about 7.110
GBq) was released at the rate of 50 GBq/min or less lower than the maximum release rate from the main stuck stipulated in safety regulations (3.7
10
GBq/min). Then, the equipment used in the controlled release of radioactive krypton gas and the main process (all systems, including branch pipes connected to the main process) were cleaned with nitrogen gas. Although there were delays due to weather, we were able to complete the controlled release of radioactive krypton gas by the end of April 2022, as originally targeted without any problems such as equipment failure.
Yamamoto, Masahiko; Nishida, Naoki; Kobayashi, Daisuke; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kitao, Takahiko; Kuno, Takehiko
JAEA-Technology 2023-004, 30 Pages, 2023/06
Glove-box gloves, that are used for handling nuclear fuel materials at the Tokai Reprocessing Plant (TRP) of the Japan Atomic Energy Agency, have an expiration date by internal rules. All gloves are replaced at a maximum of every 4-year. However, degrees of glove deterioration varies depending on its usage environment such as frequency, chemicals, and radiation dose. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured and technical evaluation method for the glove life-time is established. It was found that gloves without any defects in its appearance have enough physical properties and satisfies the acceptance criteria values of new gloves. Thus, it was considered that the expired gloves could be used for total of 8-year, by adding 4-year of new glove life-time. In addition, the results of extrapolation by plotting the glove's physical properties versus the used years showed that the physical properties at 8-year is on the safer side than the reported physical properties of broken glove. Also, the data are not significantly different from the physical properties of the long-term storage glove (8 and 23 years). Based on these results, life-time of gloves at TRP is set to be 8-year. The frequency of glove inspections are not changed, and if any defects is found, the glove is promptly replaced. Thus, the risk related to glove usage is not increased. The cost of purchasing gloves, labor for glove replacement, and the amount of generated waste can be reduced by approximately 40%, respectively, resulting in more efficient and rationalized glove management.
Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi
Annals of Nuclear Energy, 181, p.109534_1 - 109534_10, 2023/02
Times Cited Count:2 Percentile:27.51(Nuclear Science & Technology)Feasibility of reprocessing of High Temperature Gas-cooled Reactor (HTGR) spent fuel by existing Plutonium Uranium Redox EXtraction (PUREX) plant and technology has been investigated. The spent fuel dissolved solution includes approximately 3 times amount of uranium-235 and 1.5 times amount of protonium because of the 3 times higher burnup compared with that of Light Water Reactor (LWR). Then, the heavy metal of the spent fuel is planned to be diluted to 3.1 times by depleted uranium to satisfy the limitation of Rokkasho Reprocessing Plant (RRP) plant. In the present study, recoverability of uranium and plutonium with the dilution is confirmed by a simulation with a reprocessing process calculation code. Moreover, the case without the dilution from the economic perspective is investigated. As a result, the feasibility is confirmed without the dilution, and it is expected that the reprocessed amount is reduced to 1/3 compared with a diluted case even though the facility should be optimized from the perspective of mass flow and criticality.
Yamamoto, Masahiko; Horigome, Kazushi; Kuno, Takehiko
Applied Radiation and Isotopes, 190, p.110460_1 - 110460_7, 2022/12
Times Cited Count:3 Percentile:40.19(Chemistry, Inorganic & Nuclear)Gravimetric measurement of U content in UO with ignition in the air has been investigated. The ignition temperature, ignition time and aliquot sample mass are optimized as 900
C, 60 minutes, and 1 g, respectively. The method is validated by IDMS with uncertainty estimation. The obtained result by gravimetry is 0.78236
0.00051 g/g (k=2) and agreed with IDMS value within its uncertainty. It has been found that U in UO
can be measured accurately and precisely by gravimetry.
Omori, Kazuki; Yamauchi, Sho; Yanagibashi, Futoshi; Sasaki, Shunichi; Wada, Takuya; Suzuki, Hisanori; Domura, Kazuyuki; Takeuchi, Kenji
Nihon Hozen Gakkai Dai-18-Kai Gakujutsu Koenkai Yoshishu, p.245 - 248, 2022/07
Tokai Reprocessing Plant (TRP), which is shifted to decommissioning stage, stores large amount of high-level radioactive liquid waste (HLLW). Although TRP is implementing vitrification of HLLW to reduce the risks related to HLLW storage, additional 20 years are required to complete vitrification of HLLW. Therefore, TRP is implementing safety countermeasure related to seismic resistance of HLLW storage facility as one of the top priorities. The results of the seismic evaluation indicate that although the facility itself is seismically resistant, there is a risk of insufficient binding force acting between the facility and the surrounding ground. Thus, replacement of the surrounding ground with concrete is performed. Since the countermeasures, to protect existing buries structure and coordinate with the other construction projects around the site, are required, the dedicated team was setup to handle the process and safety management of the concrete replacement construction.
Fujii, Yutaka*; Takada, Chie
FBNews, (540), p.7 - 11, 2021/12
no abstracts in English
Yoshinaka, Kazuyuki; Suzuki, Masafumi*
Gijutsushi, (659), p.4 - 7, 2021/11
The regulatory standards for nuclear facilities were revised, reflecting the lessons learned from Fukushima-Daiichi NPS accident. Many requirements for safety measures, in case there are natural disaster or severe accidents, are added for nuclear fuel cycle facilities. Aiming achievement of the nuclear fuel cycle, various safety measures for conforming to new regulatory standard and improving, have been taken at Rokkasho reprocessing plant.
Yoshinaka, Kazuyuki; Shimizu, Kazuyuki; Sugiyama, Takayuki
JAEA-Review 2021-008, 112 Pages, 2021/07
We had drastically been improving quality assurance system for Tokai Reprocessing Plant (TRP), through applying new regulatory requirements, giving up ISO certification from FY2012 to 2019. In revising QA system, it is obviously necessary to satisfy the regulatory requirements, but it is important to continuously improve the QA system considering effectiveness to safety performance based on earlier experiences. In this report, the background of QA system revision, interpretation and thinking way of conformation and application to new regulation and "Application Guide to Quality Assurance Code for Safety in Nuclear Power Plants (JEAC 4111)" to TRP, issues considered. And matters that require attention for future QA activities are described. Key points are "in work processes planning, relationship with other sections and responsibility boundaries should be clearly defined with such as flow chart", "to manage decision-making processes is important, including input information, judgment criteria and so on", "concerning process monitoring and measurement, not only focusing on scheduling but also viewpoints toward conditions of facilities/systems, conformance to regulatory requirements and process improvement are necessary", and "in documentation, matching for existing system, clear relation to other fundamental documents are necessary".
Hashikura, Yasuaki*; Ishijima, Yasuhiro; Nakahara, Masaumi; Sano, Yuichi; Ueno, Fumiyoshi; Abe, Hitoshi
Hozengaku, 19(3), p.95 - 102, 2020/10
A plutonium concentrator was selected, and constant load tensile tests with controlled applied potentials and electrochemical tests were conducted in nitric acid and sodium nitrate solutions. From the results, a map which shows the effect of nitric acid concentration to crack initiation potential was drawn. And, it was pointed out that not only the nitric acid but also the nitrate ion coordinated to the nitrate must be considered in evaluating the possibility of stress corrosion cracking.
Iketani, Shotaro; Yokobori, Tomohiko; Ishikawa, Joji; Yasuhara, Toshiyuki*; Kozawa, Toshiyuki*; Takaizumi, Hirohide*; Momma, Takeshi*; Kurosawa, Shingo*; Iseda, Hirokatsu; Kishimoto, Katsumi; et al.
JAEA-Review 2018-016, 46 Pages, 2018/12
Japan Atomic Energy Agency (JAEA) adopts melting process for the waste processing and packaging method of radioactive miscellaneous solid waste in NSRI because melting process is effective in radioactivity evaluation, volume reduction, and stabilization treatment. Metal melting processing facilities, Incinerator, and Nonmetal melting processing facilities (hereinafter referred to as melting process facilities) have taken lots of safety measures, including measures for preventing the recurrence of the fire accidents. To exchange opinions and discuss the validity of these measures and so on with internal personnel and external experts, "Discussions on Melting Process Facilities" was held. As a document collection, this paper summarizes presentation materials of discussion meetings. Presentation materials describe "Outline of AVRF", "Safety measures in the melting facilities in WVRF", "Operation management of the melting facilities in WVRF", "Comparison of the past accident cases between facilities in and outside Japan and WVRF", and "Introduction of past accident cases and safety measures in other facilities from each committee".
Kono, Soma; Yamada, Hiroyuki; Goto, Atsushi*; Yamazaki, Katsuyuki; Nakamura, Hironobu; Kitao, Takahiko
Nihon Kaku Busshitsu Kanri Gakkai Dai-39-Kai Nenji Taikai Rombunshu (Internet), 2 Pages, 2018/11
no abstracts in English
Matsushima, Ryotatsu; Sato, Fuminori; Saito, Yasuo; Atarashi, Daiki*
Proceedings of 3rd International Symposium on Cement-based Materials for Nuclear Wastes (NUWCEM 2018) (USB Flash Drive), 4 Pages, 2018/10
At TRP, LWTF was constructed as a facility for processing low radioactive liquid waste and solid waste generated at TRP, and a cold test is been carrying out. In this facility, initially, nitrate waste liquid after separation of nuclides generated with treatment of low radioactive liquid waste was to be solidified by using borate. However, at present, it is necessary to decompose the nitrate in the liquid waste to reduce the environmental burden. For the reason, as a plan to replace the nitrate with the carbonate and to make it as a cement based encapsulation, we are studying for the introduction of the facility. Currently, as a cement solidification technology development for this liquid waste, we are studying the application of cement material based on blast furnace slag (BFS) as a main component. In this report, we show the results of the test conducted on the actual scale (200 L drum can scale).
Goto, Yuichi; Yamamoto, Masahiko; Kuno, Takehiko; Inada, Satoshi
Nihon Hozen Gakkai Dai-15-Kai Gakujutsu Koenkai Yoshishu, p.489 - 492, 2018/07
Radioactive liquid waste from the Tokai Reprocessing Facility Analytical Laboratory is temporarily stored in intermediate waste storage tank by using receiving valves. Then, the liquid waste is transferred to liquid treatment facility by using liquid feed valves. The deterioration of the gasket part of these valves (leakage of waste liquid) was confirmed in 2004. Since then, the material of gaskets was changed from polyethylene to Teflon. In 2016, the gaskets were replaced by periodical update. Therefore, physical properties of used gaskets were investigated, and the relevance between radioactive level and degradation degree was evaluated.