Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 7219

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High-temperature rupture failure of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka

Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01

JAEA Reports

Analysis of deposits inside the reactor at Fukushima Daiichi Nuclear Power Station in JFY2021; The Subsidy program of "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris)" starting FY2021

Ikeuchi, Hirotomo; Sasaki, Shinji; Onishi, Takashi; Nakayoshi, Akira; Arai, Yoichi; Sato, Takumi; Ohgi, Hiroshi; Sekio, Yoshihiro; Yamaguchi, Yukako; Morishita, Kazuki; et al.

JAEA-Data/Code 2023-005, 418 Pages, 2023/12

For safe and steady decommissioning of Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station (1F), information concerning composition and physical/chemical properties of fuel debris generated in the reactors should be estimated and provided to other projects conducting the decommissioning work including the retrieval of fuel debris and the subsequent storage. For this purpose, in FY2021, samples of contaminants (the wiped smear samples and the deposits) obtained through the internal investigation of the 1F Unit 2 were analyzed to clarify the components and to characterize the micro-particles containing uranium originated from fuel (U-bearing particles) in detail. This report summarized the results of analyses performed in FY2021, including the microscopic analysis by SEM and TEM, radiation analysis, and elemental analysis by ICP-MS, as a database for evaluating the main features of each sample and the probable formation mechanism of the U-bearing particles.

Journal Articles

Application of USV to marine monitoring after Fukushima Daiichi Nuclear Power Plant Accident and its applicability as a nuclear disaster prevention tool

Sanada, Yukihisa; Misono, Toshiharu; Shiribiki, Takehiko*

Kaiyo Riko Gakkai-Shi, 27(2), p.37 - 44, 2023/12

This paper summarizes the general situation of marine monitoring conducted after the Fukushima Daiichi Nuclear Power Plant accident, the experience of development and operation of USVs, and the possibility of applying unmanned vessels as a tool for nuclear disaster prevention in the future. 0.01 Bq/L or less for seawater and 10 Bq/L or less for seabed soil. Operational tests of three USVs have been continuously conducted for use in such environmental radiation monitoring. Development of these UAVs is underway with a view to utilizing them for seawater sampling, direct measurement of the seafloor soil surface layer, and seafloor soil sampling, depending on their performance. It is necessary to promote the development of USVs for future nuclear power plant accidents.

Journal Articles

MAAP code analysis focusing on the fuel debris conditions in the lower head of the pressure vessel in Fukushima-Daiichi Nuclear Power Station Unit 3

Sato, Ikken; Yoshikawa, Shinji; Yamashita, Takuya; Shimomura, Kenta; Cibula, M.*; Mizokami, Shinya*

Nuclear Engineering and Design, 414, p.112574_1 - 112574_20, 2023/12

Journal Articles

Effect of molybdenum release on UO$$_{2}$$/MOX fuel oxidation under severe light water reactor accident conditions

Liu, J.; Miwa, Shuhei; Karasawa, Hidetoshi; Osaka, Masahiko

Nuclear Materials and Energy (Internet), 37, p.101532_1 - 101532_5, 2023/12

JAEA Reports

Effect of preparation conditions and storage time on characteristic and rheological properties of carbonate slurries

Kato, Tomoaki; Yamagishi, Isao

JAEA-Technology 2023-018, 53 Pages, 2023/11

JAEA-Technology-2023-018.pdf:2.6MB

In the decommissioning of Fukushima Daiichi Nuclear Power Station, radioactive carbonate slurry waste was generated using the Advanced Liquid Processing System (ALPS) pretreatment and temporarily stored in a high integrity container (HIC). In 2015, overflow of supernatant from HIC estimate as bubble retention in the carbonate slurry was discovered, increasing the need for a safety assessment of the carbonate slurry stored the HIC (HIC slurry). In this study, a carbonate slurry (simulated slurry) was prepared according to the Mg/Ca mass ratio in the ALPS inlet water of the HIC slurry which overflew the HIC. The effects of reaction time during the pretreatment process, suspended solids concentration (SS concentration), and settling time on the particle composition, morphology and rheological properties of the slurry were investigated. Evaluating the effect of reaction time and concentration process on chemical properties in slurry production, the effect of the reaction time was not confirmed in the simulated slurry that had undergone the concentration process, and slurry prepared at SS concentration of 150 g/L was composed of formless particles have a particle diameter of 0.4 $$mu$$m or less. We also investigate the effect of SS concentration on sedimentability, decrease in SS concentration by dilution with processing solution contributed to an increase in the initial slurry settling velocity. Furthermore, two different flow characteristics were observed depending on the settling time, suggesting that the slurry at the initial settling time has non-Bingham flow properties, whereas it changes to Bingham flow properties as the settling time becomes longer. In addition, yield stress was increased with settling time, and this yield stress was found to be exponentially proportional to the density of the slurry. These results provide knowledge to estimate the current state of HIC slurry and are expected to contribute to the safety assessment.

JAEA Reports

Segregation of components of molten core oxidic materials using cold crucible induction heating technique (Joint research)

Sudo, Ayako; M$'e$sz$'a$ros, B.*; Sato, Takumi; Nagae, Yuji

JAEA-Research 2023-007, 31 Pages, 2023/11

JAEA-Research-2023-007.pdf:3.61MB

For the criticality assessment of fuel debris generated by the accident in Fukushima Daiichi Nuclear Power Station, understanding of the elemental localization in fuel debris is important. Especially, the distribution of Fe and Gd, which may behave as potential neutron absorber materials in the fuel debris, is of particular important from the viewpoint of nuclear criticality safety. To investigate the localization tendency of Gd and Fe in molten core materials during solidification progress, liquefaction/solidification tests on core materials containing UO$$_{2}$$, ZrO$$_{2}$$, FeO, Gd$$_{2}$$O$$_{3}$$, and simulated fission products (MoO$$_{3}$$, Nd$$_{2}$$O$$_{3}$$, SrO, and RuO$$_{2}$$) and concrete (SiO$$_{2}$$, Al$$_{2}$$O$$_{3}$$, and CaO) were performed using cold crucible induction heating technique. During the test, the molten core materials gradually subsided and solidified from the bottom to the top of the melt. Elemental analysis showed that Fe content in the inner region increased approximately up to 3.4 times that in the bottom region. The concentration of Fe into the inner region was observed in all the samples regardless of the initial FeO composition, cooling rates, and phase separation. This suggests that FeO may be concentrated into the low temperature region, where the melt solidified later. In contrast, Gd content in the bottom region increased approximately up to 2.6 times that in the inner region. The concentration of Gd into the bottom region was observed when the initial Gd$$_{2}$$O$$_{3}$$ content was higher than 1 at.%. This suggests that Gd$$_{2}$$O$$_{3}$$ may be concentrated into the earlier solidified region. On the other hand, no significant localization was observed on the simulated fission products.

Journal Articles

Radioactive wastes

Matsueda, Makoto

Chino To Joho, 35(4), P. 88, 2023/11

Radioactive waste is what contains radioactive materials generated through nuclear activities, radiopharmacy, research and development. The treatment and disposal of the waste are one of the key challenges facing people. This glossary describes the classification of radioactive waste, the challenges and the current efforts of its disposal and current efforts, and so on.

Journal Articles

Applicability confirmation experiment of DDSI method for quantification of plutonium in fuel debris

Mitsuboshi, Natsumi; Nagatani, Taketeru; Kosuge, Yoshihiro*; Suzuki, Risa; Okada, Toyofumi

Dai-44-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2023/11

This paper reports the applicability confirmation experiment of DDSI method for quantification of plutonium in fuel debris. We conducted passive neutron measurement for the samples which consist of un-irradiated MOX sample, Cf-252 neutron source, and B-10 neutron absorber to simulate the fuel debris. It was revealed that DDSI method has enough capability to evaluate the leakage multiplication of the sample with unknown amounts of fissile material and neutron absorbers.

Journal Articles

An Estimation method for an unknown covariance in cross-section adjustment based on unbiased and consistent estimator

Maruyama, Shuhei; Endo, Tomohiro*; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 60(11), p.1372 - 1385, 2023/11

Journal Articles

Assessment of ambient dose equivalent rate distribution patterns in a forested-rugged terrain using field-measured and modeled dose equivalent rates

Yasumiishi, Misa*; Masoudi, P.*; Nishimura, Taku*; Ochi, Kotaro; Ye, X.*; Aldstadt, J.*; Komissarov, M.*

Radiation Measurements, 168, p.106978_1 - 106978_16, 2023/11

In this study, we surveyed air dose rates using hand-held and backpack-type scintillators in a forest of deciduous and evergreen trees in Fukushima Prefecture, Japan. The effects of topographic features on air dose rates were examined using multivariate adaptive regression splines (MARS) against five selected topographic parameters. The air dose rates were distributed unevenly in the forest, and air dose rates varied by more than 1$$mu$$Sv/h as a function of time, likely owing to ground wetness etc. The effect of different topographic parameters varied between survey dates. The MARS model predictions with all topographic parameters yielded an R$$^{2}$$ of 0.54 or higher. To discuss whether the effect of topography on air dose rates and soil contamination levels is consistent, air dose rates measured in the field were compared with those estimated from the depth profile of radiocesium in soil. Most air dose rates estimated from the soil samples were in the range of field measurements.

Journal Articles

Upgrade of seismic design procedure for piping systems based on elastic-plastic response analysis

Nakamura, Izumi*; Otani, Akihito*; Okuda, Yukihiko; Watakabe, Tomoyoshi; Takito, Kiyotaka; Okuda, Takahiro; Shimazu, Ryuya*; Sakai, Michiya*; Shibutani, Tadahiro*; Shiratori, Masaki*

Dai-10-Kai Kozobutsu No Anzensei, Shinraisei Ni Kansuru Kokunai Shimpojiumu (JCOSSAR2023) Koen Rombunshu (Internet), p.143 - 149, 2023/10

In 2019, the JSME Code Case for seismic design of nuclear power plant piping systems was published. The Code Case provides the strain-based fatigue criteria and detailed inelastic response analysis procedure as an alternative design rule to the current seismic design, which is based on the stress evaluation by elastic response analysis. In 2022, it was approved to revise the Code Case with improving the cycle counting method for fatigue evaluation to the Rain flow method. In addition, the discussion to incorporate the elastic-plastic behavior of support structures is now in progress for the next revision of the Code Case. This paper discusses the contents and background of the 2022 revision, the progress of the next revision, and future tasks.

Journal Articles

Study on criticality safety control of fuel debris for validation of methodology applied to the safety regulation

Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Yamane, Yuichi; Izawa, Kazuhiko; Nagaya, Yasunobu; Kikuchi, Takeo; et al.

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 6 Pages, 2023/10

To remove and store safely the fuel debris generated by the severe accident of the Fukushima Daiichi Nuclear Power Station in 2011 is one of the most important and challenging topics for decommissioning of the damaged reactors in Fukushima. To validate the adopted method for the evaluation of criticality safety control of the fuel debris through comparison with the experimental data obtained by the criticality experiments, the Nuclear Regulation Authority (NRA) of Japan funds a research and development project which was entrusted to the Nuclear Safety Research Center (NSRC) of Japan Atomic Energy Agency (JAEA) from 2014. In this project, JAEA has been conducting such activities as i) comprehensive computation of the criticality characteristics of the fuel debris and making database (criticality map of the fuel debris), ii) development of new continuous energy Monte Carlo code, iii) evaluation of criticality accident and iv) modification of the critical assembly STACY for the experiments for validation of criticality safety control methodology. After the last ICNC2019, the project has the substantial progress in the modification of STACY which will start officially operation from May 2024 and the development of the Monte Carlo Code "Solomon" suitable for the criticality calculation for materials having spatially random distribution complies with the power spectrum. We present the whole picture of this research and development project and status of each technical topics in the session.

Journal Articles

Debris-simulated core analysis under fuel procurement constraints in new STACY experiments

Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Yoshikawa, Tomoki; Murakami, Takahiko; Kobayashi, Fuyumi; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10

New experiments simulating fuel debris in the new criticality assembly, STACY, are designed to contribute to the validation of criticality calculations for criticality control of the fuel debris in the Fukushima Daiichi Nuclear Power Plant accident. In the new STACY experiment, a two-region core consisting of a driver region and a test region was investigated in order to configure a debris-simulated core with under-moderation condition (lattice pitch 1.27-cm) having the constraint of available fuel rod number. The test region with a 1.27-cm lattice pitch is surrounded by the driver region, in which fuel rods are arranged in a checkerboard pattern on a 1.27-cm lattice plate, with a 1.80-cm lattice pitch. Neutron spectra and sensitivity were calculated by using MCNP6 and ENDF/B-VII. The core which has a 17$$times$$17 test region with 373 fuel rods is the largest two-region core under the constraint. It was found that the core which has a 17$$times$$17 test region can simulate the neutron spectra of under-moderation condition in a 13$$times$$13 region inside the test region with the root-mean square percentage error of less than 5%. It was also confirmed that the sensitivity of $$^{28}$$Si and $$^{40}$$Ca (n,$$gamma$$) reactions when the concrete simulant, was loaded could be simulated.

Journal Articles

Evaluation of thermal expansion reactivity feedback effect in water-moderated fuel-particle-dispersion system

Fukuda, Kodai

Proceedings of 4th Reactor Physics Asia Conference (RPHA2023) (Internet), 4 Pages, 2023/10

Brief evaluations were performed using the N-F model to quantitatively clarify the effect of thermal expansion on the consequences of criticality accidents in the water-moderated fuel-particle-dispersion system. The analysis clarified that ignoring thermal expansion can lead to underestimation or overestimation of the consequences by several tens of percent. It is concluded that evaluators can ignore the thermal expansion when they evaluate the consequences of the prompt supercritical transient in water-moderated solid fuel-dispersion systems, such as fuel debris systems. Only the Doppler effect can be considered when the fuel-temperature-feedback coefficient is prepared. However, depending on the required accuracy, the evaluators should take care of the error caused by ignoring thermal expansion.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2021)

Department of HTTR

JAEA-Review 2023-016, 82 Pages, 2023/09

JAEA-Review-2023-016.pdf:2.31MB

The High Temperature Engineering Test Reactor (HTTR) is the first Japanese High Temperature Gas-cooled Reactor (HTGR) with 30MW in thermal power and 950$$^{circ}$$C of maximum outlet coolant temperature that is constructed by the Japan Atomic Energy Agency located at Oarai-machi, Higashiibaraki-gun, Ibaraki-ken, Japan. The purpose of the HTTR is establishment of basic HTGR technologies, demonstration of HTGR safety characteristics and so on. The HTTR has had a lot of experience of HTGRs' operation and maintenance throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2021, as the HTTR completed activities to conform to the New Regulatory Requirements of Nuclear Regulation Authority, The HTTR restarted since the 2011 off the Pacific coast of Tohoku Earthquake and carried out the Loss-of-forced cooling test without Vessel Cooling System (VCS) operational at 9MW (Three gas circulators trip and VCS is stopped.) as the safety demonstration test. This report summarizes the activities carried out in the fiscal year 2021, which were the situation of the New Regulatory Requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

JAEA Reports

Annual report for FY2021 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2021 - March 31, 2022)

Akiyama, Yoichi; Shibanuma, So; Yanagisawa, Kenichi*; Yamada, Taichi; Suzuki, Kenta; Yoshida, Moeka; Ono, Takahiro; Kawabata, Kuniaki; Watanabe, Kaho; Morimoto, Kyoichi; et al.

JAEA-Review 2023-015, 60 Pages, 2023/09

JAEA-Review-2023-015.pdf:4.78MB

Naraha Center for Remote Control Technology Development (NARREC) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). NARREC consists of a Full-scale Mock-up Test Building and Research Management Building. Various test facilities are installed in these buildings for the decommissioning work of Fukushima Daiichi NPS. These test facilities are intended to be used for various users, such as companies engaged in the decommissioning work, research and development institutions, educational institutions and so on. The number of NARREC facility uses was 84 in FY2021. We participated booth exhibitions and presentations on the decommissioning related events. Moreover, we also contributed to the development of human resources by supporting the 6th Creative Robot Contest for Decommissioning. As a new project, "Narahakko Children's Classroom" was implemented for elementary school students in Naraha Town. This report summarizes the activities of NARREC in FY2021, such as the utilization of facilities and equipment of NARREC, the development of remote-control technologies for supporting the decommissioning work, arrangement of the remote-control machines for emergency response, and training for operators by using the machines.

Journal Articles

Effects of radioactive cesium from suspended matter and fallout on agricultural products

Nihei, Naoto*; Yoshimura, Kazuya

Agricultural Implications of Fukushima Nuclear Accident (IV), p.33 - 40, 2023/09

Journal Articles

Quantitative imaging of trace elements in solid samples by online isotope dilution laser ablation-inductively coupled plasma-mass spectrometry

Yanagisawa, Kayo; Matsueda, Makoto; Furukawa, Makoto*; Ishiniwa, Hiroko*; Wada, Toshihiro*; Hirata, Takafumi*; Takagai, Yoshitaka*

Analyst, 148(18), p.4291 - 4299, 2023/09

Quantitative imaging of trace elements was successfully performed by online isotope dilution laser ablation inductively coupled plasma mass spectrometry (online LA-ICP-IDMS). The sample aerosols produced by LA are mixed online with the mist created from an isotopically enriched spike solution via an in-house cyclonic spray chamber, which has a gas port on the top. Quantification was continuously achieved in each spot; subsequently, quantitative imaging was realized. Fe and Sr were selected as the model elements, and their spot quantifications based on online-isotope dilution. The method was applied to actual biological hard tissues, and the results were compared with electron probe microanalyzer data.

Journal Articles

Hierarchical Bayesian modeling to quantify fracture limit uncertainty of high-burnup advanced fuel cladding tubes under loss-of-coolant accident conditions

Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka

Nuclear Engineering and Design, 411, p.112443_1 - 112443_12, 2023/09

 Times Cited Count:0 Percentile:0.02

7219 (Records 1-20 displayed on this page)