Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2022-069, 114 Pages, 2023/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of /
/
-rays radiolysis" conducted in FY2021. In this work, in order to ensure the long-term reliability of steel structures that ensure important confinement functions in the debris removal process, such as existing PCVs and newly constructed negative pressure maintenance systems and piping, corrosion phenomena in wet environments where
- and
-ray emitting nuclides come into contact with steel are clarified for the first time. At the same time, we will develop a new corrosion prevention technology that has excellent basic applicability to PCVs ..
Collaborative Laboratories for Advanced Decommissioning Science; Japan Chemical Analysis Center*
JAEA-Review 2022-037, 118 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of ,
, and X-rays" conducted in FY2021. The present study aims to enable rapid analysis of radionuclides in fuel debris and waste, we have established the latest measurement system, such as the multiple
-ray detection methods, and the Spectral Determination Method (hereafter referred to "SDM") was developed. In the study, the
-ray measuring device was installed, and the measurement system consisting of the Ge detector, CeBr
detector, and NaI detector was completed in FY2021. In the SDM development, standard spectra of
-ray singles, multiple
-ray measurements, …
Matsumura, Taichi; Okumura, Keisuke; Fujita, Manabu*; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.
Radiation Physics and Chemistry, 199, p.110298_1 - 110298_8, 2022/10
Times Cited Count:1 Percentile:40.11(Chemistry, Physical)Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2022-002, 85 Pages, 2022/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of /
/
-rays radiolysis" conducted in FY2020. In this work, in order to ensure the long-term reliability of steel structures that ensure important confinement functions in the debris removal process, such as existing PCVs and newly constructed negative pressure maintenance systems and piping, corrosion phenomena in wet environments where
- and
-ray emitting nuclides come into contact with steel are clarified for the first time.
Aoyama, Takahito; Kato, Chiaki; Sato, Tomonori; Sano, Naruto; Yamashita, Naoki; Ueno, Fumiyoshi
Zairyo To Kankyo, 71(4), p.110 - 115, 2022/04
no abstracts in English
Collaborative Laboratories for Advanced Decommissioning Science; Japan Chemical Analysis Center*
JAEA-Review 2021-060, 105 Pages, 2022/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of ,
, and X-rays" conducted in FY2020. The present study aims to enable rapid analysis of radionuclides in fuel debris and waste, and develops the measurement system such as multiple
-ray detection method. We develop a spectral determination method (SDM method) for integrated analysis by constructing a spectral database for nuclides including
-rays and X-rays by measurement using this system and radiation simulation calculation. This method enables simultaneous quantification of multiple nuclides and reduces the chemical separation process.
Kato, Takuma*; Nagaoka, Mika; Guo, H.*; Fujita, Hiroki; Aida, Taku*; Smith, R. L. Jr.*
Environmental Science and Pollution Research, 28(39), p.55725 - 55735, 2021/10
Times Cited Count:0 Percentile:0(Environmental Sciences)In this work, hydrothermal leaching was applied to simulated soils (clay minerals vermiculite, montmorillonite, kaolinite) and actual soils (Terunuma, Japan) to generate organic acids with the objective to develop an additive-free screening method for determination of Sr in soil. Stable strontium (SrCl) was adsorbed onto soils for study and ten organic acids were evaluated for leaching Sr from simulated soils under hydrothermal conditions (120 to 200
C) at concentrations up to 0.3 M. For strontium-adsorbed vermiculite (Sr-V), 0.1 M citric acid was found to be effective for leaching Sr at 150
C and 1 h treatment time. Based on these results, the formation of organic acids from organic matter in Terunuma soil was studied. Hydrothermal treatment of Terunuma soil produced a maximum amount of organic acids at 200
C and 0.5 h reaction time. To confirm the possibility for leaching of Sr from Terunuma soil, strontium-adsorbed Terunuma soil (Sr-S) was studied. For Sr-S, hydrothermal treatment at 200
C for 0.5 h reaction time allowed 40% of the Sr to be leached at room temperature, thus demonstrating an additive-free method for screening of Sr in soil. The additive-free hydrothermal leaching method avoids calcination of solids in the first step of chemical analysis and has application to both routine monitoring of metals in soils and to emergency situations.
Shimizu, Noritaka*; Togashi, Tomoaki*; Utsuno, Yutaka
Progress of Theoretical and Experimental Physics (Internet), 2021(3), p.033D01_1 - 033D01_15, 2021/03
Times Cited Count:3 Percentile:45.29(Physics, Multidisciplinary)no abstracts in English
Tsujimura, Norio; Hoshi, Katsuya; Yamazaki, Takumi; Momose, Takumaro; Aoki, Katsunori; Yoshitomi, Hiroshi; Tanimura, Yoshihiko; Yokoyama, Sumi*
KEK Proceedings 2020-5, p.21 - 28, 2020/11
Yokoyama, Sumi*; Ezaki, Iwao*; Tatsuzaki, Hideo*; Tachiki, Shuichi*; Hirao, Shigekazu*; Aoki, Katsunori; Tanimura, Yoshihiko; Hoshi, Katsuya; Yoshitomi, Hiroshi; Tsujimura, Norio
Radiation Measurements, 138, p.106399_1 - 106399_5, 2020/11
Times Cited Count:2 Percentile:26.54(Nuclear Science & Technology)Tsujimura, Norio
Radioisotopes, 69(8), p.253 - 261, 2020/08
The Japan Coast Guard observation vessel Takuyo encountered nuclear fallout originating from a U.S. nuclear weapon test detonated at Bikini Atoll on July 12, 1958. The exposure occurred two days after the detonation when the vessel was sailing southbound, about 300 km west of the danger area set up around the test site. From a small amount of rain sampled at the beginning of a rainsquall, a gross beta radioactivity of 16 kBq/L was observed, but no total precipitation measurement was made at that time. Therefore, the total amount of gross beta activity surface deposition density was alternatively derived based on an indication of a NaI(Tl) scintillation detector placed 0.3-m above the after deck of the Takuyo. By combining the maximum measured dose rate of 3.1 Sv/h aboard with the results of Monte Carlo simulations, the surface deposition density on the Takuyo was estimated to be 2 PBq/km
, about 10 times higher than the past maximum observed in Japan in 1966. The resultant effective dose to crew members was also estimated to be below 100
Sv over the entire period of the voyage.
Tsujimura, Norio
Isotope News, (768), p.38 - 39, 2020/04
no abstracts in English
Matsumura, Taichi; Nagaishi, Ryuji; Katakura, Junichi*; Suzuki, Masahide*
Radiation Physics and Chemistry, 166, p.108493_1 - 108493_9, 2020/01
Times Cited Count:1 Percentile:13.39(Chemistry, Physical)In this work, when radiation sources of Cs,
Sr and
Y were assumed to be put in the front of a plain SUS304 plate as a typical material submerged in water, energy spectra of secondary photons and electrons at the front and back sides of plate were simulated with changing the thickness of plate, and spacing between the source and plate by using a Monte Carlo calculation code of PHITS. In the case of
Cs gamma-ray (monochromatic 662 keV), the energy spectra at the front side was smaller than those at the back side due to the existence of plate. Then the dependence of spectra on the plate thickness was observed more clearly at the back side than at the front side. It was clearly shown how the energy spectra of photons and electrons varied with the incident radiation type, the spacing, and the thickness.
Tsujimura, Norio
Isotope News, (763), p.42 - 43, 2019/06
no abstracts in English
Hotchi, Hideaki; Harada, Hiroyuki; Takayanagi, Tomohiro
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2009 - 2012, 2019/06
Takahashi, Fumiaki
Genshiryoku No Ima To Ashita, p.106 - 109, 2019/03
The Atomic Energy Society of Japan has planned to publish a document for public, entitled "Current and tomorrow of atomic energy, -Experiences from the accident at the Tokyo Electronic Power Company Fukushima Dai-ichi NPPs-". The documents give us basics and usages of radiations, in addition to nuclear power plants and the accident at TEPCO Fukushima Dai-ichi NPPs. This manuscript explains interactions and penetrations in material for -rays,
-rays,
-rays and neutrons. In addition, exposure characteristics that is determined by properties of radiations are expressed here. This manuscript also explains characteristics in internal exposure and countermeasures of radiation protection following the TEPCO accident for Iodine-131 and Cesium-137.
Tsujimura, Norio
Hoken Butsuri (Internet), 54(1), p.40 - 44, 2019/03
Rainwater containing radioactive materials originating from the USA's nuclear weapon test conducted at Bikini Atoll was observed throughout Japan in 1954. It has been reported that the maximum gross beta activity observed at that time in Kyoto was 523 pCi/mL (19,000 Bq/L). This measurement, however, focused on the gross beta activity contained in a small amount of rain sampled at the beginning of rainfall, which is different from present observations that are based on the average gross beta activity contained in rain collected during a 24-h period. As a result of reviewing and converting the 1954 data to be equivalent to current measurement, the maximum value was reduced to 50 pCi/mL (1,800 Bq/L), with a resultant surface deposition density of 310 mCi/km (11,000 MBq/km
). These values are well below 1/10 of the past maximum observed a few days after China's fifth nuclear weapon test in 1966.
Van Duppen, P.*; Andreyev, A. N.
The Euroschool of Exotic Beams, Vol.5, p.65 - 116, 2018/04
Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko
JPS Conference Proceedings (Internet), 11, p.070009_1 - 070009_6, 2016/11
Beta spectra of various nuclide species were measured by commercially available compact spectrometer. The shape of spectra obtained from the spectrometer approximately agreed with that of theoretical spectra. The beta dose equivalent at any depths has been able to be obtained as a product of measured pulse height spectra and appropriate conversion coefficients of ICRP Publ. 74. The dose rates evaluated from the spectra were comparable to the reference dose rates of standard beta calibration sources. And, we were able to determine the dose equivalent with relative error of indication of 10% without the complicated correction.
Tokuyasu, Kayoko; Furuta, Sadaaki*; Kokubu, Yoko; Umeda, Koji
Nihon Hoshasen Anzen Kanri Gakkai-Shi, 15(1), p.80 - 87, 2016/07
An optically stimulated luminescence reader (Riso TL/OSL DA-20) was installed in Toki Research Institute of Isotope Geology and Geochronology (Toki-shi, Gifu Prefecture), Japan Atomic Energy Agency (JAEA) for dating the geological sample. An accumulated dose of the sample is obtained using the reader. Sealed beta source of strontium-90 is required to be mounted on the reader because repeated artificial irradiation is necessary for the accumulated dose estimation. However, there are not many introduction examples for the reader domestically, and the information as to radiation control of the reader is limited. We therefore report here the process of source loading on the reader and radiation control associated with the use of the source.