Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 202

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of on-site detection system for concealed nuclear materials

Tanabe, Kosuke*; Komeda, Masao; Toh, Yosuke; Kitamura, Yasunori*; Misawa, Tsuyoshi*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 67(3), p.198 - 202, 2025/03

no abstracts in English

Journal Articles

Application of the spectral determination method to unified $$beta$$-, $$gamma$$- and X-ray spectra

Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Shinohara, Hirofumi*; Suzuki, Katsuyuki*; Shen, H.*

Journal of Nuclear Science and Technology, 10 Pages, 2025/00

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

The spectrum determination method (SDM) is the method to determine radioactivities by analyzing full spectral shape of $$beta$$- or $$gamma$$ rays through least-squares fitting by referring to standard $$beta$$- and $$gamma$$ spectra. In this paper, we have newly applied the SDM to a unified spectrum composed of two spectra measured with a Ge detector and a liquid scintillation counter. By analyzing the unified spectrum, uncertainties of deduced radioactivities have been improved. We applied this method to the unified spectrum including 40 radionuclides with equal intensities, and have deduced their radioactivities correctly.

Journal Articles

Performance study of a new LiCAF:Ce detector developed for high-efficient neutron detection in intense $$gamma$$-ray fields

Kaburagi, Masaaki; Kamada, Kei*; Ishii, Junya*; Matsumoto, Tetsuro*; Manabe, Seiya*; Masuda, Akihiko*; Harano, Hideki*; Kato, Masahiro*; Shimazoe, Kenji*

Journal of Instrumentation (Internet), 19(11), p.P11019_1 - P11019_16, 2024/11

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

Journal Articles

Deep learning-based bubble detection with Swin Transformer

Uesawa, Shinichiro; Yoshida, Hiroyuki

Journal of Nuclear Science and Technology, 61(11), p.1438 - 1452, 2024/11

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

We developed a deep learning-based bubble detector with a Shifted window Transformer (Swin Transformer) to detect and segment individual bubbles among overlapping bubbles. To verify the performance of the detector, we calculated its average precision (AP) with different number of training images. The mask AP increased with the increase in the number of training images when there were less than 50 images but remained constant when there were more than 50 images. It was observed that the AP for the Swin Transformer and ResNet were almost the same when there were more than 50 images; however, when few training images were used, the AP of the Swin Transformer were higher than that of the ResNet. Furthermore, with regard to the increase in void fraction, the AP of the Swin Transformer showed a decrease similar to that in the case of the ResNet; however, for few training images, the AP of the Swin Transformer was higher than that of the ResNet in all void fractions. Moreover, we confirmed the detector trained with synthetic bubble images was able to segment overlapping bubbles and deformed bubbles in a bubbly flow experiment. Thus, we verified that the new bubble detector with Swin Transformer provided higher AP than the detector with ResNet for fewer training images.

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2024-020, 77 Pages, 2024/09

JAEA-Review-2024-020.pdf:3.34MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted from FY2020 to FY2022. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle.

Journal Articles

Compact and transportable system for detecting lead-shielded highly enriched uranium using $$^{252}$$Cf rotation method with a water Cherenkov neutron detector

Tanabe, Kosuke*; Komeda, Masao; Toh, Yosuke; Kitamura, Yasunori*; Misawa, Tsuyoshi*; Tsuchiya, Kenichi*; Sagara, Hiroshi*

Scientific Reports (Internet), 14, p.18828_1 - 18828_10, 2024/08

 Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)

Journal Articles

High-temperature test for BGaN semiconductor neutron detectors

Okita, Shoichiro; Sakurai, Tatsuhiro*; Ezaki, Iwao*; Takagi, Katsuyuki*; Nakano, Takayuki*; Hino, Masahiro*

KURNS Progress Report 2023, P. 97, 2024/07

Journal Articles

Measurement of the response of a $$^6$$Li-glass detector to gamma rays by a coincidence method

Ito, Fumiaki*; Lee, J.; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Mochimaru, Takanori*; Hori, Junichi*; Terada, Kazushi*; Koizumi, Mitsuo

Nuclear Instruments and Methods in Physics Research A, 1064, p.169465_1 - 169465_9, 2024/07

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

JAEA Reports

Development of elemental technologies of hand-foot-cloth monitors for $$alpha$$-contamination visualization (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2024-006, 54 Pages, 2024/06

JAEA-Review-2024-006.pdf:2.21MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of elemental technologies of hand-foot-cloth monitors for $$alpha$$-contamination visualization" conducted in FY2022. The present study aims to develop hand-foot-monitors for $$alpha$$-contamination visualization and cloth monitors for $$alpha$$/$$beta$$-contamination visualization consisting of a portable phoswich detector for measuring $$alpha$$/$$beta$$-contamination distribution and energy to ensure the safety and security of workers involved in the decommissioning project of the 1F. The possibility of practical application of new scintillator materials and devices was examined with the goal of developing such new instruments.

Journal Articles

A Segmented Total Energy Detector (sTED) optimized for (n,$$gamma$$) cross-section measurements at n_TOF EAR2

Alcayne, V.*; Kimura, Atsushi; 134 of others*

Radiation Physics and Chemistry, 217, p.111525_1 - 111525_11, 2024/04

 Times Cited Count:5 Percentile:97.67(Chemistry, Physical)

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2023-030, 80 Pages, 2024/03

JAEA-Review-2023-030.pdf:4.96MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted in FY2022. The present study aims to develop a Cooperative Operation Robot system for RAdiation Source Exploration (CORRASE). The multiple robot system provides radiation source exploration with wide field of view, rapidity, and low cost. The radiation source exploration is realized with multiple robots carrying directional gamma-ray detectors determining the incident direction of the incoming gamma-rays. We will develop the system by the final year of this proposal aiming for application in the Fukushima Daiichi Nuclear Power Station.

Journal Articles

Rapid multi-nuclide identification method by simultaneous $$beta$$, $$gamma$$, and X-ray spectrum analysis

Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Kin, Tadahiro*; Shinohara, Hirofumi*

Isotope News, (790), p.19 - 23, 2023/12

When analyzing samples that contain many radionuclides at various concentrations, such as radioactive waste or fuel debris, it is difficult to apply general spectrum analysis methods and is necessary to chemically separate each nuclide before quantifying it. The chemical separation is especially essential for analysis using a liquid scintillation counter (LSC). In this report, the authors explain the newly developed spectral determination method (SDM) in which the entire spectrum is fitted to quantify radioactivity of nuclides mixed in a sample. By applying the SDM to $$beta$$- and X-ray spectrum measured by LSC and $$gamma$$-ray spectrum measured by Ge detector simultaneously, the authors demonstrated that radioactivity of 40 radionuclides mixed in a sample at concentrations varying by two orders could be quantified, which is useful to simplify chemical separation process in radionuclide quantification.

JAEA Reports

Development of radiation hardened diamond image sensing devices (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Advanced Industrial Science and Technology*

JAEA-Review 2023-003, 72 Pages, 2023/06

JAEA-Review-2023-003.pdf:4.87MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of radiation hardened diamond image sensing devices" conducted from FY2019 to FY2021. The present study aims to develop image sensing devices which work under the high radiation condition. The devices will be realized using radiation hard diamond semiconductor devices as charge transfer devices and photodetectors. The research project has mainly two targets such as to confirm charge coupled devices operation on diamond unipolar devices and to characterize photo conductivity of diamond detectors.

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-068, 90 Pages, 2023/05

JAEA-Review-2022-068.pdf:3.55MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of thin SiC neutron detector with high radiation resistance" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional neutron detectors is difficult because heavy radiation shields are needed.

Journal Articles

Actual stress analysis of small-bore butt-welded pipe by complementary use of synchrotron X-rays and neutrons

Suzuki, Kenji*; Miura, Yasufumi*; Shiro, Ayumi*; Toyokawa, Hidenori*; Saji, Choji*; Shobu, Takahisa; Morooka, Satoshi

Zairyo, 72(4), p.316 - 323, 2023/04

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2022-070, 70 Pages, 2023/03

JAEA-Review-2022-070.pdf:5.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2021. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed ...

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-041, 76 Pages, 2023/01

JAEA-Review-2022-041.pdf:3.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted in FY2021. The present study aims to develop a Cooperative Operation Robot system for RAdiation Source Exploration (CORRASE). The multiple robot system provides radiation source exploration with wide field of view, rapidity, and low cost. The radiation source exploration is realized with multiple robots carrying directional gamma-ray detectors determining the incident direction of the incoming gamma-rays. We will develop the system by the final year of this proposal aiming for application in the Fukushima Daiichi Nuclear Power Station.

Journal Articles

Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF

Domingo-Pardo, C.*; Kimura, Atsushi; 135 of others*

European Physical Journal A, 59(1), p.8_1 - 8_11, 2023/01

 Times Cited Count:9 Percentile:90.02(Physics, Nuclear)

Journal Articles

Crystal configuration dependence of CsI(Tl) scintillation detectors on environmental dose rate measurement

Tsuda, Shuichi; Saito, Kimiaki

Radiation Protection Dosimetry, 198(17), p.1283 - 1291, 2022/10

 Times Cited Count:0 Percentile:0.00(Environmental Sciences)

Spherical or cylindrical detectors superior to directional characteristic are commonly used to monitor dose rates in the environment to detect scattering gamma-rays emitted from radionuclides in soil or air. The authors have performed environmental dose rates measurements using various kinds of detectors to investigate the directional characteristics, and experimentally verified the variations in dose rates due to directional characteristics unique to each detector. Furthermore, a dose rate measured by a CsI(Tl) scintillation detector with cuboidal crystal agreed with that by a CsI(Tl) scintillation detector with cylindrical crystal. Simulations by PHITS under various CsI(Tl) crystal configurations revealed that there are certain aspect ratios of cuboidal CsI(Tl) crystal with less directional dependence. Since cubes are advantageous in terms of production cost, this result indicates the potential of CsI(Tl) scintillation detectors with cuboidal crystal for use in the environmental dose rate monitoring.

JAEA Reports

The Laboratory Operation Based on ISO/IEC 17025; Radioactivity analysis of environmental samples by germanium semiconductor detectors

Urushidate, Tadayuki*; Yoda, Tomoyuki; Otani, Shuichi*; Yamaguchi, Toshio*; Kunii, Nobuaki*; Kuriki, Kazuki*; Fujiwara, Kenso; Niizato, Tadafumi; Kitamura, Akihiro; Iijima, Kazuki

JAEA-Review 2022-023, 8 Pages, 2022/09

JAEA-Review-2022-023.pdf:1.19MB

After the accident of the Fukushima Daiichi Nuclear Power Station, the Japan Atomic Energy Agency has newly set up a laboratory in Fukushima and started measuring radioactivity concentrations of environmental samples. In October 2015, Fukushima Radiation Measurement Group has been accredited the ISO/IEC 17025 standard by the Japan Accreditation Board (JAB) as a testing laboratory for radioactivity analysis ($$^{134}$$Cs, $$^{137}$$Cs) based on Gamma-ray spectrometry with germanium semiconductor detectors. The laboratory has measured approximately 60,000 of various environmental samples at the end of March 2022. The laboratory quality control and measurement techniques have been accredited by regular surveillance of JAB. In September 2019, the laboratory renewed accreditation as a testing laboratory for radioactivity analysis.

202 (Records 1-20 displayed on this page)