Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Pyeon, C. H.*; Oizumi, Akito; Katano, Ryota; Fukushima, Masahiro
Nuclear Science and Engineering, 199(3), p.429 - 444, 2025/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Experimental analyses of neptunium-237 (Np), americium-241 (
Am), and
Am fission and
Np capture reaction rates are conducted by the Serpent 2 code together with ENDF/B-VIII.0 and JENDL-5, using experimental data at neutron spectra of thermal and intermediate regions obtained in the solid-moderated and solid-reflected cores with highly-enriched uranium fuel at the Kyoto University Critical Assembly. Also, uncertainty quantification of fission and capture reaction rate ratios of test samples of
Np,
Am and
Am with reference samples of uranium-235 (
U) and gold-197 (
Au) are evaluated by the MARBLE code system. In terms of fission reaction rate ratios of
Np/
U,
Am/
U and
Am/
U, a comparison between experiments and Serpent 2 calculations shows an accuracy about 5, 15 and 10%, respectively, together with ENDF/B-VIII.0 and JENDL-5. For capture reaction rate ratios of
Np/
Au, Serpent 2 calculations reveal a fairly good accuracy at the thermal neutron spectrum. The total uncertainties of
Np/
U,
Am/
U and
Am/
U fission reaction rate ratios by MARBLE with the covariance data of ENDF/B-VIII.0 and JENDL-5 are found to be about 4% at most in all cores, except for about 8% of
Am/
U with ENDF/B-VIII.0 at the intermediate neutron spectrum.
Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Kasahara, Seiji; Okamoto, Koji*
JAEA-Research 2024-012, 98 Pages, 2025/02
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for the purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO
-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. In research project of Pu-burner HTGR carried out from fiscal year of 2014 to fiscal year of 2017, simulated CFPs were fabricated using Ce to simulate Pu. Moreover, simulated fuel compacts were fabricated using fabricated simulated CFPs. In this report, results of microstructural observation of CeO
-YSZ and ZrC layer at each fabrication step are reported.
Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*
Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Sakamoto, Masahiro; Okumura, Keisuke; Kanno, Ikuo; Matsumura, Taichi; Terashima, Kenichi; Riyana, E. S.; Kaneko, Junichi*; Mizokami, Masato*; Mizokami, Shinya*
Journal of Nuclear Science and Technology, 10 Pages, 2025/00
Times Cited Count:0Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2024-021, 126 Pages, 2024/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc" conducted in FY2022. The present study aims to propose a construction method to stop jet deflectors by improved geopolymer and ultra-heavy muddy water, and to repair the lower part of the dry well. In addition, in order to increase the options for on-site construction in unknown situations such as deposition conditions, we will examine a wide range of construction outside the pedestal, and evaluate the feasibility of the construction method by the latest thermal flow simulation method.
Batsaikhan, M.; Oba, Hironori; Karino, Takahiro; Akaoka, Katsuaki; Wakaida, Ikuo
Optics Express (Internet), 32(24), p.42626 - 42638, 2024/11
Times Cited Count:0Yuki, Kohei*; Horiguchi, Naoki; Yoshida, Hiroyuki; Yuki, Kazuhisa*
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 4 Pages, 2024/11
Fuel debris in the Fukushima Nuclear Power Station is cooled under immersion condition. However, in the event of an unexpected decrease in water level, coolant contacts high-temperature fuel debris having porous structure. In this event, although fuel debris needs to be cooled rapidly, thermal behavior at liquid-solid contact, such as capillary phenomenon, remains unclear. In this paper, as basic research, we evaluate droplet evaporation characteristics after contact with metal porous media with small pores less than 1 mm. In experiment, to obtain life time curve of a droplet, bronze or stainless steel porous media having 1, 40, or 100 m pore diameter are utilized. Experimental results show that Leidenfrost phenomenon is suppressed on the porous surfaces because generated vapor can be discharged from the pores. Further, for bronze porous media, capillary phenomenon is observed as the temperature of the porous media increase because of generation of oxide film having fine structure. On the other hand, due to low wettability of stainless steel porous media, capillary phenomenon does not occur, and the droplet was not sucked and spread into pore. This indicates that rapid cooling by the capillary phenomenon can not be expected if fuel debris has the same characteristics as the stainless steel porous media.
Miyazawa, Takeshi; Uwaba, Tomoyuki; Yano, Yasuhide; Tanno, Takashi; Otsuka, Satoshi; Onizawa, Takashi; Ando, Masanori; Kaito, Takeji
JAEA-Technology 2024-009, 140 Pages, 2024/10
For the purpose of enhancing the reliability of fast reactor fuel designing using modified type 316 steel, the out-of-pile and in-pile mechanical data of modified type 316 steel cladding tubes and wrapper tubes were statistically analyzed with the knowledge on material science and engineering; the high-temperature strength equations of modified type 316 steel, which can be applied to high-dose neutron irradiation environment, were derived. The out-of-pile high-temperature tensile and creep data of modified type 316 steel cladding tubes and wrapper tubes were derived up to 900C, which is higher than the upper limit temperature of anticipated transient event of fast reactor. Using the extended database, the best-fit equation and the lower limit equation were derived for out-of-pile 0.2% proof strength, ultimate tensile strength and creep rupture strength while the best-fit equation and the upper and lower limit equations for creep strain. Furthermore, the degradation factors for tensile and creep strength, which will be produced by in-reactor environment (i.e., neutron irradiation in liquid sodium), were evaluated using the existing neutron irradiation data of modified type 316 steel, which were derived using the experimental fast reactor Joyo, the French proto-type fast reactor Phenix, the American experimental fast reactor FFTF. The derived equations were validated by the comparison with the experimental data.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-026, 80 Pages, 2024/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions" conducted from FY2019 to FY2022. In the project, radiochemists, nuclear chemists, nuclear physicists, material scientists, and environmental biologists are teamed to elucidate the mechanism of the degradation of fuel debris by combined effects of radiological, chemical, and biological functions.
Rochman, D.*; Minato, Futoshi; Watanabe, Tomoaki; 52 of others*
EPJ Nuclear Sciences & Technologies (Internet), 10, p.9_1 - 9_83, 2024/10
Vauchy, R.; Hirooka, Shun; Horii, Yuta; Ogasawara, Masahiro*; Sunaoshi, Takeo*; Yamada, Tadahisa*; Tamura, Tetsuya*; Murakami, Tatsutoshi
Journal of Nuclear Materials, 599, p.155233_1 - 155233_11, 2024/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)The fluorite exsolution/recombination in UPu
O
(y = 0.30 and 0.45) and PuO
was investigated using differential scanning calorimetry. The results are in relatively good agreement with the literature data, except for plutonia. Our values indicate that the critical temperature of the miscibility gap in Pu-O is 30
50 K lower than previously reported. Finally, the systematic experimental procedure allowed us refining the locus of the solvus existing in hypostoichiometric U
0Pu
O
, U
Pu
O
, and PuO
dioxides.
Bachmann, A. M.*; Richards, S.*; Feng, B.*; Nishihara, Kenji; Abe, Takumi
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
This work demonstrates the value of code verification as an initial step in utilizing fuel cycle simulation. Cyclus and NMB are open-source fuel cycle simulators that provide computational modeling of nuclear fuel cycle alternatives and were chosen by Argonne National Laboratory and Japan Atomic Energy Agency (JAEA), respectively, for a multi-year collaboration on fuel cycle benchmarks. Both are relatively new and can be improved after conducting a rigorous code-to-code comparison. Initial verification of these simulators was performed using a set of hypothetical scenarios for once-through and multi-recycle fuel cycles. The results of this work identify how differences in scenario definitions and the modeling methodologies of the two simulators lead to differences in results in material inventories, mass flows, and other important metrics for fuel cycle assessments.
Nakashima, Shinsuke*; Moro, A.*; Komatsu, Ren*; Faragasso, A.*; Matsuhira, Nobuto*; Woo, H.*; Kawabata, Kuniaki; Yamashita, Atsushi*; Asama, Hajime*
Proceedings of International Topical Workshop on Fukushima-Daiichi Decommissioning Research 2024 (FDR2024) (Internet), 4 Pages, 2024/10
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-022, 59 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Investigation of effects of nano interfacial phenomena on dissolution aggregation of alpha nanoparticles by using micro nano technologies" conducted in FY2022. To ensure the safety of retrieval and storage management of nuclear fuel debris generated by the Fukushima Daiichi Nuclear Power Station accident, understanding of dissolution-denaturation behavior of the fuel debris alpha particles is one of the most crucial issues. This research aims to create novel microfluidic real-time measurement device for elucidating dissolution, aggregation, and denaturation processes of metal oxide nanoparticles under various solution environments, and clarify their nano-size and interfacial effects.
Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*
JAEA-Review 2024-020, 77 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted from FY2020 to FY2022. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle.
Journeau, C.*; Molina, D.*; Brackx, E.*; Berlemont, R.*; Tsubota, Yoichi
Journal of Nuclear Science and Technology, 61(9), p.1239 - 1247, 2024/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)CEA has manufactured a series of Fukushima Daiichi fuel debris simulants, either with depleted uranium oxide or with hafnium oxide as a surrogate of UO. In ex-vessel compositions resulting from an interaction between corium and concrete, the oxidic phase density becomes lighter than that of the metallic phase, which segregates at the bottom. Three of these metallic phases have been mechanically cut at CEA Cadarache with handsaw and with core boring tool in FUJISAN facility. It appeared that two of these metallic blocks were extremely hard to cut (one from a fabrication with uranium oxide, the other from a simulant block) while the last one was more easily cut. The similarities and differences in metallographic analyses (SEM-EDS and XRD) of these three metal blocks will be presented and discussed. This experience provides useful learnings in view of the cutting and retrieval of fuel debris from Fukushima Daiichi
Licensing Application Group, Fuels and Materials Department
JAEA-Testing 2024-002, 20 Pages, 2024/08
The contamination accident occurred at Plutonium Fuel Research Facility (PFRF) in Japan Atomic Energy Agency (JAEA) Oarai Research and Development Institute on June 6, 2017. During the work of opening the fuel storage container and checking the properties of the contents, the plastic bag that double-packed the inner container burst. The scattering of the fuels contaminated the work room and exposed the worker. The cause of the plastic bag burst was that the enclosed epoxy resin was decomposed by -rays and the internal pressure increased due to the generated hydrogen gas. The 54 storage containers containing plutonium held at PFRF also at risk of increasing internal pressure. Therefore, an opening inspection was conducted to confirm the contents of the storage container in the hot cell. In addition, the contents of storage containers that may generate gas were stabilized. We are planning to transport the fuel storage containers out to another facility for the decommission of PFRF. The other 9 storage containers include oxide raw material powder: Pu +
U in excess of 220 g. In order to decrease to less than 220 g (the limit of transport cask), the metal inner containers in the storage container were taken out and repacked in another storage container. This report describes advance measures such as permit application and the details of about storage container opening inspection and metal inner container repacking.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-010, 112 Pages, 2024/08
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3" conducted in FY2022. The present study aims to elucidate the cause of the high dosage under shield plug by clarification of to the cesium behavior of migration, adhesion to structure and deposition as well as evaluate the properties of metal-rich debris predeceasing melted through the materials science approach based on the most probable scenario of accident progression of Unit 2 and 3. In this fiscal year, the followings were achieved.
Shibata, Hiroki; Saito, Hiroaki; Hayashi, Hirokazu; Takano, Masahide
Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 23(3), p.74 - 80, 2024/08
Partitioning and transmutation of minor actinides techniques have been developed to reduce the radiotoxicity and volume in the high-level radioactive wastes. Minor actinide nitride fuel has been chosen as a candidate for transmutation of long-lived nuclides by accelerator-driven system. Understanding irradiation behavior of nitride fuel is important for its design and development, however, experimental data on irradiation tests of actinide nitrides and these solid solutions are scarce. Recently, in JAEA, nitride fuel performance analysis module based on light water reactor fuel performance code, FEMAXI-7, has been developed to simulate irradiation behavior of the nitride fuel. In this study, performance analysis was carried out focusing on the pellet-cladding mechanical interaction (PCMI), which was pointed out as the most effective factor for the fuel safety during irradiation. Simulation results show that PCMI does not cause the creep rupture of the cladding.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-013, 48 Pages, 2024/07
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2022. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology, National Institute of Advanced Industrial Science and Technology, and Nagaoka University of Technology as the second year of three years research project.