Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 380

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Simultaneous determination of zircon crystallisation age and temperature; Common thermal evolution of mafic magmatic enclaves and host granites in the Kurobegawa granite, central Japan

Yuguchi, Takashi*; Yamazaki, Hayato*; Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Suzuki, Satoshi*; Ogita, Yasuhiro; Sando, Kazusa*; Imura, Takumi*; Ono, Takeshi*

Journal of Asian Earth Sciences, 226, p.105075_1 - 105075_9, 2022/04

 Times Cited Count:1 Percentile:75.63(Geosciences, Multidisciplinary)

Simultaneous determination of the U-Pb age of zircon and concentration of titanium in a single analysis spot, using inductively coupled plasma mass spectrometry with laser ablation sample introduction, produces paired age and temperature data of zircon crystallisation, potentially revealing time-temperature ($$t-T$$) histories for evolved magma. The Kurobegawa granite, central Japan, contains abundant mafic magmatic enclaves (MMEs). We applied this method to evaluate MMEs and their host (enclosing) granites. Cooling behaviour common to both MMEs and host rocks was found between 1.5 and 0.5 Ma. Rapid cooling from the zircon crystallisation temperature to the closure temperature of biotite K-Ar system was within $$sim$$1 million year. Combining the obtained $$t-T$$ paths of MMEs and host rocks with petrological information can provide insights into magma chamber processes. This suggests that MME flotation, migration, and spread through the magma chamber ceased at 1.5-0.5 Ma, indicating the emplacement age of the Kurobegawa granitic pluton, as no large-scale reheating episodes have occurred since then.

Journal Articles

CFD analysis of natural circulation in LBE-cooled accelerator-driven system

Sugawara, Takanori; Watanabe, Nao; Ono, Ayako; Nishihara, Kenji; Ichihara, Kyoko*; Hanzawa, Kohei*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 10 Pages, 2022/03

Japan Atomic Energy Agency (JAEA) has investigated an accelerator-driven system (ADS) to transmute minor actinides (MAs) included in high level wastes discharged from nuclear power plants. The ADS is a lead-bismuth cooled tank-type reactor with 800 MW thermal power. It is supposed that the ADS is safer than conventional critical reactors because it is operated in a subcritical state. The previous study performed the transient analyses for the typical ADS accidents such as unprotected loss of flow or beam overpower. It was shown that all calculation cases except loss of heat sink (LOHS) satisfied the no-damage criteria. To avoid the damage by LOHS, the ADS equips Direct Reactor Auxiliary Cooling System (DRACS) to remove the decay heat. The most important points of a DRACS operation are its reliability and to ensure the flowrate in a natural circulation state. This study aims to perform the CFD analysis of the natural circulation to clarify the flowrate in the ADS reactor vessel.

Journal Articles

Scaling-up capabilities of TRACE integral reactor nodalization against natural circulation phenomena in small modular reactors

Mascari, F.*; Bersano, A.*; Woods, B. G.*; Reyes, J. N.*; Welter, K.*; Nakamura, Hideo; D'Auria, F.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

Journal Articles

Dissolution and precipitation behaviors of zircon under the atmospheric environment

Kitagaki, Toru; Yoshida, Kenta*; Liu, P.*; Shobu, Takahisa

npj Materials Degradation (Internet), 6(1), p.13_1 - 13_8, 2022/02

 Times Cited Count:1 Percentile:73.19(Materials Science, Multidisciplinary)

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-042, 115 Pages, 2022/01

JAEA-Review-2021-042.pdf:5.18MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-038, 65 Pages, 2022/01

JAEA-Review-2021-038.pdf:4.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2020. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under high gamma ray radiation environment (i.e. 1 kGy/h maximum) and compact-light-weight to fit constraints of the penetration size and the payload. In order to develop the monitoring system, the project aims to design and evaluate neutron detection devices based on diamond sensors and a high radiation resistive signal-processi

JAEA Reports

Evaluation of the minimum critical amount for heterogeneous lattice systems composed of fuel rods utilized in low-power water-moderated research and test reactors by using continuous-energy Monte Carlo code MVP with JENDL-4.0

Yanagisawa, Hiroshi

JAEA-Technology 2021-023, 190 Pages, 2021/11

JAEA-Technology-2021-023.pdf:5.25MB

Computational analyses on nuclear criticality characteristics were carried out for heterogeneous lattice systems composed of water moderator and fuel rods utilized in low-power research and test reactors, in which the depletion of fuel due to burnup is relatively small, by using the continuous-energy Monte Carlo code MVP Version 2 with the evaluated nuclear data library JENDL-4.0. In the analyses, the minimum critical number of fuel rods was evaluated using calculated neutron multiplication factors for the heterogeneous systems of the uranium dioxide fuel rod in the Static Experiments Critical Facility (STACY) and the Tank-type Critical Assembly (TCA), and the uranium-zirconium hydride fuel rod in the Nuclear Safety Research Reactor (NSRR). In addition, six sorts of the ratio of reaction rates, which are components of neutron multiplication factors, were calculated in the analyses to explain the variation of neutron multiplication factors with the ratio of water moderator to fuel volume in a unit fuel rod cell. Those results of analyses are considered to be useful for the confirmation of reasonableness and validity of criticality safety measures as data showing criticality characteristics for water-moderated heterogeneous lattice systems composed of the existing fuel rods in research and test reactors, of which criticality data are not sufficiently provided by the Criticality Safety Handbook.

Journal Articles

Leaching behavior of radionuclides from samples prepared from spent fuel rod comparable to core debris in the 1F NPS

Onishi, Takashi; Maeda, Koji; Katsuyama, Kozo

Journal of Nuclear Science and Technology, 58(4), p.383 - 398, 2021/04

 Times Cited Count:5 Percentile:73.46(Nuclear Science & Technology)

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2020-058, 101 Pages, 2021/02

JAEA-Review-2020-058.pdf:5.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies" conducted in FY2019.

JAEA Reports

Data report of ROSA/LSTF experiment SB-SL-01; Main steam line break accident

Takeda, Takeshi

JAEA-Data/Code 2020-019, 58 Pages, 2021/01

JAEA-Data-Code-2020-019.pdf:3.85MB

An experiment denoted as SB-SL-01 was conducted on March 27, 1990 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-IV (ROSA-IV) Program. The ROSA/LSTF experiment SB-SL-01 simulated a main steam line break (MSLB) accident in a pressurized water reactor (PWR). The test assumptions were made such as auxiliary feedwater (AFW) injection into secondary-side of both steam generators (SGs) and coolant injection from high pressure injection (HPI) system of emergency core cooling system into cold legs in both loops. The MSLB led to a fast depressurization of broken SG, which caused a decrease in the broken SG secondary-side wide-range liquid level. The broken SG secondary-side wide-range liquid level recovered because of the AFW injection into the broken SG secondary-side. The primary pressure temporarily decreased a little just after the MSLB, and increased up to 16.1 MPa following the closure of the SG main steam isolation valves. Coolant was manually injected from the HPI system into cold legs in both loops a few minutes after the primary pressure reduced to below 10 MPa. The primary pressure raised due to the HPI coolant injection, but was kept at less than 16.2 MPa by fully opening a power-operated relief valve of pressurizer. The core was filled with subcooled liquid through the experiment. Thermal stratification was seen in intact loop cold leg during the HPI coolant injection owing to the flow stagnation. On the other hand, significant natural circulation prevailed in broken loop. When the continuous core cooling was ensured by the successive coolant injection from the HPI system, the experiment was terminated. The experimental data obtained would be useful to consider recovery actions and procedures in the multiple fault accident with the MSLB of PWR. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-SL-01.

Journal Articles

U-Pb ages of zircons from metamorphic rocks in the upper sequence of the Hidaka metamorphic belt, Hokkaido, Japan; Identification of two metamorphic events and implications for regional tectonics

Takahashi, Yutaka*; Mikoshiba, Masumi*; Shimura, Toshiaki*; Nagata, Mitsuhiro; Iwano, Hideki*; Danhara, Toru*; Hirata, Takafumi*

Island Arc, 30(1), p.e12393_1 - e12393_15, 2021/01

 Times Cited Count:1 Percentile:28.33(Geosciences, Multidisciplinary)

The Hidaka metamorphic belt is an excellent example of island-arc-type crust, and in this belt the metamorphic grade increases westwards from unmetamorphosed sediment up to the granulite facies. The metamorphic age of the belt had previously been considered to be ca. 55 Ma. However, zircons from the granulites in the lower sequence have given U-Pb ages of ca. 21-19 Ma and a preliminary report on zircons from pelitic gneiss in the upper sequence gave a U-Pb age of ca. 40 Ma. In this paper we provide new U-Pb ages for zircons from the pelitic gneisses in the upper sequence in order to assess the metamorphic age and also the maximum depositional age of the sedimentary protolith. The weighted mean $$^{206}$$Pb/$$^{238}$$U ages and 2 sigma errors for zircons from biotite gneiss in the central area of the belt are 39.6 $$pm$$ 0.9 Ma for metamorphic overgrowth rims and 53.1 $$pm$$ 0.9 Ma for the youngest inherited detrital cores. The ages of zircons from cordierite-biotite gneiss in the southern area are 35.9 $$pm$$ 0.7 Ma for overgrowth rims and 46.5 $$pm$$ 2.8 Ma for the youngest detrital cores. These results indicate that the metamorphism of the upper sequence took place at ca. 40-36 Ma, and that the sedimentary protolith was deposited after ca. 53-47 Ma. These metamorphic ages are consistent with the reported ages of ca. 37-36 Ma plutonic rocks in the upper sequence, but contrast with the ca. 21-19 Ma ages of metamorphic and plutonic rocks in the lower sequence. Therefore, we conclude, that the upper and lower metamorphic sequences developed independently but became coupled before ca. 19 Ma as a result of dextral reverse tectonic movements, as indicated by the intrusion of ca. 19-18 Ma magmas, possibly generated in the lower sequence, into the upper sequence.

Journal Articles

Simultaneous determination of zircon U-Pb age and titanium concentration using LA-ICP-MS for crystallization age and temperature

Yuguchi, Takashi*; Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Ito, Daichi*; Ogita, Yasuhiro; Yagi, Koshi*; Ono, Takeshi*

Lithos, 372-373, p.105682_1 - 105682_9, 2020/11

 Times Cited Count:1 Percentile:13.39(Geochemistry & Geophysics)

Simultaneous determination of zircon U-Pb age and titanium concentration for a single analysis spot gives both the crystallization age and temperature. The crystallization age and temperature pairs in granitic zircons map the time-temperature ($$t-T$$) path of granitic magma before its solidification. In laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis, it is challenging to quantitatively analyse a low level of titanium concentration. This study employed two approaches using a Quadrupole mass spectrometer equipped with a collision/reaction cell (CRC). The methods were applied to zircon samples of the Kurobegawa granite (KRG), the Okueyama granite (OKG), the Toki granite (TKG), and the Tono plutonic complex (TPC) and provided U-Pb ages and titanium concentrations consistent with previous studies. The crystallization ages and temperatures collected from individual analysis spots of zircon samples in the KRG, OKG, TKG, and TPC are plotted in the $$t-T$$ diagrams and enable us to characterize the rapid cooling paths at thermal conditions of zircon crystallization at the sampling sites.

JAEA Reports

Assessment of the probability of aircraft crashing for HTTR

Ono, Masato; Hanawa, Yoshio; Sonobe, Hiroshi; Nishimura, Arashi; Sugaya, Naoto; Iigaki, Kazuhiko

JAEA-Technology 2020-010, 14 Pages, 2020/09

JAEA-Technology-2020-010.pdf:1.74MB

In response to new standard for regulating research and test reactor which is enforced December 18, 2013, it was carried out assessment of the probability of aircraft crashing for HTTR. According to assessment method provided in the Assessment Criteria of the Probability of Aircraft Crashing on Commercial Power Reactor Facilities, assessment was conducted targeting reactor building, spent fuel storage building and cooling tower. As a result, it was confirmed that the probability was 5.98$$times$$10$$^{-8}$$, which is lower than the assessment criteria 10$$^{-7}$$.

Journal Articles

Advanced concepts in TRISO fuel

Minato, Kazuo; Ogawa, Toru

Comprehensive Nuclear Materials, 2nd Edition, Vol.5, p.334 - 360, 2020/08

TRISO coated particle fuel has been developed for the high temperature gas-cooled reactors, which consists of microspherical fuel kernel and coating layers of pyrolytic carbon and silicon carbide. To improve the high temperature stability, the resistance to the chemical attack by fission products and the retention of fission products of the TRISO coated particle fuels, several types of advanced fuels were proposed and tested. Coated particle fuels for fast reactors were also proposed and tested. In this paper, fuel designs, fabrications, characterization techniques and fuel performance of these advanced coated particle fuels are systematically described. This is the updated version of the paper having the same title in Comprehensive Nuclear Materials published in 2012.

Journal Articles

Mechanical and thermal properties of Zr-B and Fe-B alloys

Sun, Y.*; Abe, Yuta; Muta, Hiroaki*; Oishi, Yuji*

Journal of Nuclear Science and Technology, 57(8), p.917 - 925, 2020/08

 Times Cited Count:4 Percentile:65.03(Nuclear Science & Technology)

Journal Articles

Fracture-mechanics-based evaluation of failure limit on pre-cracked and hydrided Zircaloy-4 cladding tube under biaxial stress states

Li, F.; Mihara, Takeshi; Udagawa, Yutaka; Amaya, Masaki

Journal of Nuclear Science and Technology, 57(6), p.633 - 645, 2020/06

 Times Cited Count:1 Percentile:21.02(Nuclear Science & Technology)

Journal Articles

Preliminary analysis of sodium experimental apparatus PLANDTL-2 for development of evaluation method for thermal-hydraulics in reactor vessel of sodium fast reactor under decay heat removal system operation condition

Ono, Ayako; Tanaka, Masaaki; Miyake, Yasuhiro*; Hamase, Erina; Ezure, Toshiki

Mechanical Engineering Journal (Internet), 7(3), p.19-00546_1 - 19-00546_11, 2020/06

Fully natural circulation decay heat removal systems (DHRSs) are to be adopted for sodium fast reactors, which is a passive safety feature without any electrical pumps. It is required to grasp the thermal-hydraulic phenomena in the reactor vessel and evaluate the coolability of the core under the natural circulation not only for the normal operating condition but also for severe accident conditions. In this paper, the numerical results of the preliminary analysis for the sodium experimental condition with the PLANDTL-2 are discussed to establish an appropriate numerical models for the reactor core including the gap region among the subassemblies and the DHX. From these preliminary analyses, the characteristics of the thermal-hydraulics behavior in the PLANDTL-2 to be focused are extracted.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2019-040, 77 Pages, 2020/03

JAEA-Review-2019-040.pdf:4.61MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 $$mu$$m $$times$$ 510 $$mu$$m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:21.02(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

Effects of temperature fluctuation on PIV measurement of natural circulation flow field

Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*

Proceedings of 14th International Symposium on Advanced Science and Technology in Experimental Mechanics (14th ISEM'19) (USB Flash Drive), 4 Pages, 2019/11

The particle image velocimetry (PIV) was measured in scaled-model water experiments simulating a natural circulation flow field in a sodium-cooled fast reactor vessel. The temperature fluctuation in the natural circulation flow field causes the distribution of the refractive index. Thus, the temperature fluctuation affects the uncertainty of the velocity in the PIV measurement. In this study, the authors evaluated the effects of the temperature fluctuation on the PIV measurement in the natural circulation flow field.

380 (Records 1-20 displayed on this page)