Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-012, 122 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (hereafter referred to "1F"), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment" conducted in FY2022. The present study aims to establish the rational waste disposal concept of a variety of wastes generated in 1F based on the hybrid-waste-solidification by the Hot Isostatic Press (HIP) method. The ceramics form with target elements, mainly iodine, which is difficult to immobilize, and Minor actinides such as Am, an alphaemitter and heat source, are HIPed with well-studied materials such as SUS and zircaloy, which make the long-term stability evaluation and safety assessment possible.
Ishitsuka, Etsuo; Nagasumi, Satoru; Hasegawa, Toshinari; Kawai, Hiromi*; Wakisaka, Shinji*; Nagase, Sota*; Nakamura, Kento*; Yaguchi, Hiroki*; Ishii, Toshiaki; Nakano, Yumi*; et al.
JAEA-Technology 2024-008, 23 Pages, 2024/07
Five people from three universities participated in the 2023 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the analysis of HTTR core, the analysis of behavior on loss of forced cooling test, the analysis of Iodine deposition behavior in primary cooling system and the feasibility study of energy storage system for HTGRs. In the questionnaire after this training, there were impressions such as that it was useful as a work experience and some students found it useful for their own research. These impressions suggest that this training was generally evaluated as good.
Zablackaite, G.; Shiotsu, Hiroyuki; Kido, Kentaro; Sugiyama, Tomoyuki
Nuclear Engineering and Technology, 56(2), p.536 - 545, 2024/02
Times Cited Count:1 Percentile:77.18(Nuclear Science & Technology)Nanjo, Kotaro; Shiotsu, Hiroyuki; Maruyama, Yu; Sugiyama, Tomoyuki; Okamoto, Koji*
Journal of Nuclear Science and Technology, 60(7), p.816 - 823, 2023/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2022-072, 116 Pages, 2023/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment" conducted in FY2021. The present study aims to establish the rational waste disposal concept of a variety of wastes generated in 1F by the novel hybrid-waste-solidification. The phosphate form of ALPS sediment wastes containing Eu, Ce, Sr and Cs were synthesized as well as radioactive Sr, Cs and I which are both emitters, AREVA sludge and Iodine Calcium apatite were synthesized, and they were processed to the stabilization treatment such as sintering and Spark Plasma ...
Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2022-050, 116 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Safe, efficient cementation of challenging radioactive wastes using alkali activated materials with high-flowability and high-anion retention capacity" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to explore alkali activated materials with high anionic nuclide retention and flowability and their recipes for safe storage and disposal of iron flocculant from the water treatment facility at 1F, and to propose a design of a solidification device that is feasible as an actual plant. In order to achieve these objectives, the following five items were carried out in this study.
Nanjo, Kotaro; Ishikawa, Jun; Sugiyama, Tomoyuki; Pellegrini, M.*; Okamoto, Koji*
Journal of Nuclear Science and Technology, 59(11), p.1407 - 1416, 2022/11
Times Cited Count:7 Percentile:80.72(Nuclear Science & Technology)Nakamura, Shoji; Toh, Yosuke; Kimura, Atsushi; Hatsukawa, Yuichi*; Harada, Hideo
Journal of Nuclear Science and Technology, 59(7), p.851 - 865, 2022/07
Times Cited Count:1 Percentile:11.62(Nuclear Science & Technology)The present study performed integral experiments of I using a fast-neutron source reactor "YAYOI" of the University of Tokyo to validate evaluated nuclear data libraries. The iodine-129 sample and flux monitors were irradiated by fast neutrons in the Glory hole of the YAYOI reactor. Reaction rates of I were obtained by measurement of decay gamma-rays emitted from I. The validity of the fast-neutron flux spectrum in the Glory hole was confirmed by the ratios of the reaction rates of flux monitors. The experimental reaction rate of I was compared with that calculated with both the fast-neutron flux spectrum and evaluated nuclear data libraries. The present study revealed that the evaluated nuclear data of I cited in JENDL-4.0 should be reduced as much as 18% in neutron energies ranging from 10 keV to 3 MeV, and supported the reported data by Noguere below 100 keV.
Gupta, S.*; Herranz, L. E.*; Lebel, L. S.*; Sonnenkalb, M.*; Pellegrini, M.*; Marchetto, C.*; Maruyama, Yu; Dehbi, A.*; Suckow, D.*; Krkel, T.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03
Shiotsu, Hiroyuki; Ito, Hiroto*; Sugiyama, Tomoyuki; Maruyama, Yu
Annals of Nuclear Energy, 163, p.108587_1 - 108587_9, 2021/12
Times Cited Count:1 Percentile:11.62(Nuclear Science & Technology)Honda, Maki
Chikyu Kagaku, 55(4), p.176 - 192, 2021/12
Iodine 129 (I) is a radionuclide that decays to Xe with a half-life of 15.7 million years. The analysis of I in the environment has played an important role not only in the fields of planetary science and earth science, but also in the nuclear field in recent years. Particularly, in the case of the Fukushima Dai-ichi Nuclear Power Plant accident in March, 2011, the scientists estimated the distribution and soil deposition of I over a wide area, and contributed to the assessment of internal exposure doses in the early stage of the accident. This is one of the most significant achievements in recent I-related studies. Future studies are expected to be conducted to elucidate the transport mechanism of I from land to river and sea, and to investigate the possible accumulation of I in aquatic organisms. The mobility of I in the soil studied by the author during the 10-years since the accident has been mainly reviewed in this manuscript.
Miwa, Shuhei; Miyahara, Naoya*; Nakajima, Kunihisa; Imoto, Jumpei; Suzuki, Eriko
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(12), p.825 - 829, 2021/12
In the BWR severe accident, it was indicated that the control material boron significantly influences chemical behavior and transition behavior of cesium, which is important from the viewpoint of exposure, and it causes great uncertainty in the prediction of environmental release and distribution in the reactor. Therefore, in order to elucidate the important chemistry to be considered in severe accident analysis, we have developed the experimental setup that enables the evaluation of chemistry during transportation in the reactor, and evaluated cesium chemistry. Based on the results, we developed the chemistry database named ECUME composed of datasets and models that are the basis of chemical reaction analysis so that chemical behavior could be evaluated by severe accident analysis code.
Hidaka, Akihide
Insights Concerning the Fukushima Daiichi Nuclear Accident, Vol.4; Endeavors by Scientists, p.341 - 356, 2021/10
Hirayama, Hideo*; Kawasaki, Masatsugu; Matsumura, Hiroshi*; Okura, Takehisa; Namito, Yoshihito*; Sanami, Toshiya*; Taki, Mitsumasa; Oishi, Tetsuya; Yoshizawa, Michio
Insights Concerning the Fukushima Daiichi Nuclear Accident, Vol.4; Endeavors by Scientists, p.295 - 307, 2021/10
Noguchi, Hiroki; Kamiji, Yu; Tanaka, Nobuyuki; Takegami, Hiroaki; Iwatsuki, Jin; Kasahara, Seiji; Myagmarjav, O.; Imai, Yoshiyuki; Kubo, Shinji
International Journal of Hydrogen Energy, 46(43), p.22328 - 22343, 2021/06
Times Cited Count:17 Percentile:62.20(Chemistry, Physical)An iodine-sulfur process offers the potential for mass producing hydrogen with high-efficiency, and it uses high-temperature heat sources, including HTGR, solar heat, and waste heat of industries. R&D tasks are essential to confirm the integrity of the components that are made of industrial materials and the stability of hydrogen production in harsh working conditions. A test facility for producing hydrogen was constructed from corrosion-resistant components made of industrial materials. For stable hydrogen production, technical issues for instrumental improvements (i.e., stable pumping of the HIx solution, improving the quality control of glass-lined steel, prevention of I precipitation using a water removal technique in a Bunsen reactor) were solved. The entire process was successfully operated for 150 h at the rate of 30 L/h. The integrity of components and the operational stability of the hydrogen production facility in harsh working conditions were demonstrated.
Nakano, Masanao
Hoken Butsuri (Internet), 56(1), p.17 - 25, 2021/03
The Tokai Reprocessing Plant is the first reprocessing plant in Japan which started hot test in 1977, and had reprocessed 1140 tons of spent nuclear fuel by May 2007. The gaseous and liquid radioactive wastes has been discharged to the environment. Since iodine-129 (I) is one of the most important nuclides for environmental impact assessment. Therefore, I in the exhaust and effluent has been controlled, and a precise analysis method of I in the environmental samples was developed, and the concentration of 129I in the environment was investigated. This report presents an overview of these activities. Not limited to I on reprocessing facilities, it is essential for nuclear operators to reduce the amount released to the environment in the spirit of ALARA, and to continuously develop the further upgrading environmental monitoring methods and evaluation methods in order to foster a sense of safety and security among residents living in the vicinity of the facilities.
Miwa, Kazuji; Obata, Hajime*; Suzuki, Takashi
Journal of Nuclear Science and Technology, 57(5), p.537 - 545, 2020/05
Times Cited Count:2 Percentile:18.85(Nuclear Science & Technology)This study investigated the vertical distribution of Iodine-129 (I) which is mainly produced by European nuclear reprocessing plants in the Chukchi Sea and Bering Sea. I was found to be distributed almost uniformly in fallout level, and an increasing in I concentration levels caused by high I water inflow from the Atlantic Ocean was not observed. Additionally, we revealed the vertical distribution of iodide, one chemical form of iodine, from the Bering Shelf area to the Chukchi Sea for the first time. The increasing tendency of iodide near sea bottom was observed.
Ho, H. Q.; Honda, Yuki*; Hamamoto, Shimpei; Ishii, Toshiaki; Takada, Shoji; Fujimoto, Nozomu*; Ishitsuka, Etsuo
Journal of Nuclear Engineering and Radiation Science, 6(2), p.021902_1 - 021902_6, 2020/04
Development Group for LWR Advanced Technology
JAEA-Data/Code 2019-017, 59 Pages, 2020/03
ECUME (ffective hemistry database of fission products nder ultiphase raction) is the database for the analyses of FP chemistry which strongly affects all the FP behaviors in a severe accident (SA) of nuclear facility like LWR. ECUME consists of three kinds of datasets: CRK (dataset for hemical eaction inetics), EM (lemental odel set) and TD (hermoynamic dataset). The present version of ECUME is prepared especially for the more accurate evaluation of cesium and iodine distribution in a reactor and release amount into an environment which should be of crucial importance towards the decommissioning of Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings (1F) and the enhancement of LWR safety after the 1F SA.
Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji
International Journal of Hydrogen Energy, 44(25), p.12583 - 12592, 2019/05
Times Cited Count:20 Percentile:52.78(Chemistry, Physical)JAEA has been conducting R&D on thermochemical water-splitting hydrogen production IS process to develop one of heat applications of high-temperature gas-cooled reactor. A test facility was constructed using corrosion-resistant industrial materials to verify integrity of the IS process components and to demonstrate continuous and stable hydrogen production. The performance of components installed in each section was confirmed. Subsequently, a trial operation of integration of the processing sections was successfully carried out for 8 hours with hydrogen production rate of approximately 10 NL/h. After that, hydrogen production operation was extended to 31 hours (approximately hydrogen production rate of 20 NL/h) by introducing a corrosion-resistance pump system with a developed shaft seal technology.