Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 11029

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Simultaneous determination of zircon crystallisation age and temperature; Common thermal evolution of mafic magmatic enclaves and host granites in the Kurobegawa granite, central Japan

Yuguchi, Takashi*; Yamazaki, Hayato*; Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Suzuki, Satoshi*; Ogita, Yasuhiro; Sando, Kazusa*; Imura, Takumi*; Ono, Takeshi*

Journal of Asian Earth Sciences, 226, p.105075_1 - 105075_9, 2022/04

Simultaneous determination of the U-Pb age of zircon and concentration of titanium in a single analysis spot, using inductively coupled plasma mass spectrometry with laser ablation sample introduction, produces paired age and temperature data of zircon crystallisation, potentially revealing time-temperature ($$t-T$$) histories for evolved magma. The Kurobegawa granite, central Japan, contains abundant mafic magmatic enclaves (MMEs). We applied this method to evaluate MMEs and their host (enclosing) granites. Cooling behaviour common to both MMEs and host rocks was found between 1.5 and 0.5 Ma. Rapid cooling from the zircon crystallisation temperature to the closure temperature of biotite K-Ar system was within $$sim$$1 million year. Combining the obtained $$t-T$$ paths of MMEs and host rocks with petrological information can provide insights into magma chamber processes. This suggests that MME flotation, migration, and spread through the magma chamber ceased at 1.5-0.5 Ma, indicating the emplacement age of the Kurobegawa granitic pluton, as no large-scale reheating episodes have occurred since then.

Journal Articles

Post-test analyses of the CMMR-4 test

Yamashita, Takuya; Madokoro, Hiroshi; Sato, Ikken

Journal of Nuclear Engineering and Radiation Science, 8(2), p.021701_1 - 021701_13, 2022/04

Journal Articles

Remobilisation of radiocaesium from bottom sediments to water column in reservoirs in Fukushima, Japan

Funaki, Hironori; Tsuji, Hideki*; Nakanishi, Takahiro; Yoshimura, Kazuya; Sakuma, Kazuyuki; Hayashi, Seiji*

Science of the Total Environment, 812, p.152534_1 - 152534_10, 2022/03

Reservoir sediments generally act as a sink for radionuclides derived from nuclear accidents, but under anaerobic conditions, several radionuclides remobilise in bioavailable form from sediment to water columns, which may contribute to a long-term contamination in aquatic products. This study systematically investigated the $$^{137}$$Cs activities between sediment and pore water, which is a direct evidence of the remobilisation of bioavailable $$^{137}$$Cs from sediments, in two highly contaminated reservoirs affected by the Fukushima Dai-ichi Nuclear Power Plant accident. Our results strongly indicate a competitive ion exchange process between $$^{137}$$Cs and NH$$_{4}$$ via a highly selective interaction with the frayed edges sites of phyllosilicate minerals to be the major reason for the variability of the Kd values between sediment and pore water, even in the Fukushima case.

Journal Articles

Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi

Yang, J.*; Ren, W.*; Zhao, X.*; Kikuchi, Tatsuya*; Miao, P.*; Nakajima, Kenji; Li, B.*; Zhang, Z.*

Journal of Materials Science and Technology, 99, p.55 - 60, 2022/02

High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices, differing from traditional alloys. Here, we investigate magnetic and thermal transport properties of the prototype face-centered-cubic high-entropy alloy CrMnFeCoNi by combining physical properties measurements and neutron scattering. Direct-current (dc) and alternating-current (ac) magnetizations measurements indicate a mictomagnetic behavior with coexisting antiferromagnetic and ferromagnetic interactions in the entire temperature region and three anomalies are found at about 80, 50, and 20 K, which are related to the paramagnetic to antiferromagnetic transition, the antiferromagnetic to ferromagnetic transition, and the spin freezing, respectively. The electrical and thermal conductivities are significantly reduced compared to Ni and the temperature dependence of lattice thermal conductivity exhibits a glass-like plateau. Inelastic neutron scattering measurements suggest weak anharmonicity so that the thermal transport is expected to be dominated by the defect scattering.

Journal Articles

A Modeling approach to estimate $$^{3}$$H discharge from rivers; Comparison of discharge from the Fukushima Dai-ichi and inventory in seawater in the Fukushima coastal region

Sakuma, Kazuyuki; Machida, Masahiko; Kurikami, Hiroshi; Iwata, Ayako; Yamada, Susumu; Iijima, Kazuki

Science of the Total Environment, 806(3), p.151344_1 - 151344_8, 2022/02

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2020 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2021-025, 159 Pages, 2022/01

JAEA-Technology-2021-025.pdf:46.66MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2020. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data. Air dose rate distribution maps were created and temporal changes of the air dose rates were analyzed. Regarding radiocesium deposition into the ground, surveys on depth profile of radiocesium and in-situ measurements were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. In the examination of scoring for classifying the importance of measurement points, a score map was created for Fukushima Prefecture and the 80 km zone from the FDNPS, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained from aircraft monitoring, car-borne surveys, and walk surveys with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2020 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Establishing a new evaluation system to characterize radiation carcinogenesis by stem cell dynamics (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institutes for Quantum Science and Technology*

JAEA-Review 2021-052, 52 Pages, 2022/01

JAEA-Review-2021-052.pdf:2.63MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Establishing a new evaluation system to characterize radiation carcinogenesis by stem cell dynamics" conducted in FY2020. In this study, the long-term clonal expansion of mammary stem cells after high- to low-dose radiation exposure was investigated using stem-cell lineage tracing technology that can permanently label stem cells and their progenies. The purpose of this study is to characterize radiation-induced breast cancer based on the dynamics of radiation-exposed stem cells by capturing proliferation and analyzing it using a mathematical model. We used a mouse model that can trace the cell lineage of basal cells of mammary gland. In this mouse, expansion of clones expressing fluorescent protein was observed over

JAEA Reports

Development of Environmental Mitigation Technology with Novel Water Purification Agents (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shinshu University*

JAEA-Review 2021-051, 81 Pages, 2022/01

JAEA-Review-2021-051.pdf:4.03MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of environmental mitigation technology with novel water purification agents" conducted in FY2020. The present study aims to develop a reusable adsorbent for strontium ions through joint research between Japan and the United Kingdom, and to reduce the amount of used adsorbent generated through the decontamination process. The basic strategy of this research is to produce adsorbents and examine their Sr adsorption performance at Shinshu University. The structural analyses of the adsorbents are conducted by the Institute for Molecular Science (IMS) and the UK teams. The adsorption data and structural information are theoretically analyzed at Tohoku University with data science, leading to a new synthetic guid

JAEA Reports

The Study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2021-050, 82 Pages, 2022/01

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation" conducted in FY2020. The present study aims to investigate the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. An interdisciplinary collaborative study discussed the correlation between radiation dose and the biological effect by analyzing the samples of wild Japanese macaques exposed to radiation due to the accident of Fukushima Daiichi Nuclear Power Station and of animal experiments.

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2021-049, 67 Pages, 2022/01

JAEA-Review-2021-049.pdf:7.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2020. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed in this

JAEA Reports

Development of technology to simultaneously measure viscosity and surface tension of molten materials in reactor core (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2021-046, 77 Pages, 2022/01

JAEA-Review-2021-046.pdf:2.92MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of technology to simultaneously measure viscosity and surface tension of molten materials in reactor core" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. Since (U, Zr)O$$_{2}$$ and boride, molten materials in reactor core, exist at extremely high temperature, chemical reactions between the vessel and these molten materials are unavoidable. Therefore, it is difficult to measure the thermophysical property of these materials. In the present study, droplets are produced by heating and melting the samples levitated by a gas levitation method, then the droplets are collided with a substrate. From the instant behavior of

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-045, 65 Pages, 2022/01

JAEA-Review-2021-045.pdf:3.41MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm" conducted in FY2020. The present study aims to develop the implementation techniques of the remote sensing method on a robot arm for monitoring the structure status in the reactor and the distribution of nuclear materials by a long-articulated robot arm with controlling and grasping the position and posture of the robot arm hand. In FY 2020, we have conducted fundamental operation check of the robot arm in the simulated environment, prototype construction of telescopic articulated arm and cable storage mechanism, investigation of drive wire specifications, improvement of LIBS probe, prototype construction of microchip

JAEA Reports

Development of high-resolution imaging camera for alpha dust (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2021-044, 58 Pages, 2022/01

JAEA-Review-2021-044.pdf:3.53MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of high-resolution imaging camera for alpha dust" conducted in FY2020. The present study aims to develop a novel alpha-ray camera consisting of imaging and an energy spectrometer to find the alpha dust to reduce the risk of health damage in Decommissioning. We have developed the camera in FY2020, and the measurement test for the energy spectra. Moreover, the imaging test has been operated. In addition, we have also developed a high-dose-rate monitor system using novel scintillators with red/infra-red emission.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-042, 115 Pages, 2022/01

JAEA-Review-2021-042.pdf:5.18MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-038, 65 Pages, 2022/01

JAEA-Review-2021-038.pdf:4.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2020. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under high gamma ray radiation environment (i.e. 1 kGy/h maximum) and compact-light-weight to fit constraints of the penetration size and the payload. In order to develop the monitoring system, the project aims to design and evaluate neutron detection devices based on diamond sensors and a high radiation resistive signal-processi

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-037, 61 Pages, 2022/01

JAEA-Review-2021-037.pdf:4.24MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of critical safety technology in fuel debris retrieval" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of research was to improve the criticality safety analysis methods in the case of fuel debris removal with the collaboration with Russian university, which has a lot of experiences in the criticality analysis. This research has been performed as two fiscal years project in FY 2019 and FY 2020 by Tokyo Institute of Technology (Tokyo Tech) and Tokyo City University (TCU) as the Japanese side, and National Research Nuclear University MEPhI as the Russian side. In FY2019, Tokyo Tech introduced a GPU server

Journal Articles

Decrease of radionuclide sorption in hydrated cement systems by organic ligands; Comparative evaluation using experimental data and thermodynamic calculations for ISA/EDTA-actinide-cement systems

Ochs, M.*; Dolder, F.*; Tachi, Yukio

Applied Geochemistry, 136, p.105161_1 - 105161_11, 2022/01

Various types of radioactive wastes and environments contain organic substances that can stabilize the aqueous complexes with radionuclides and therefore lead to a decrease of sorption. The present study focuses on testing a methodology to quantify sorption reduction factors (SRFs) in the presence of organic ligands for cement systems. Three approaches for the estimation of SRFs; (1) analogy with solubility enhancement factors, (2) radionuclide speciation based on the thermodynamic calculations, and (3) experimental sorption data in ternary systems, were coupled and tested for the representative organic ligands (ISA and EDTA) and selected key radionuclides (actinides). Our approach allows to critically evaluate the dependence of SRFs for various systems on the chosen method of quantification, in accordance with the data availability for a given systems. The reliable SRFs can only be derived from the sorption measurements in ternary systems. SRF often need to be derived in the absence of such direct evidence, and estimations need to be made based on analogies and speciation information. However, such estimates may be subject to substantial uncertainties.

Journal Articles

Improvement of analysis results from the GAGG scintillator Compton camera operated on an unmanned helicopter by selecting stable flight conditions

Shikaze, Yoshiaki; Shimazoe, Kenji*

Journal of Nuclear Science and Technology, 59(1), p.44 - 54, 2022/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A Compton camera system for use on an unmanned helicopter was previously developed for characterizing the distribution of radioactive materials in highly contaminated areas. For this study, a small camera, a laser distance meter, an attitude angles sensor, temperature sensors, and real-time monitoring software were equipped to the Compton camera system to better measure flight parameters and to more precisely detect hot spot locations. To confirm if detection results were improved by the modifications, measurements were taken from hovering and programmed flights over a field in Okuma, Fukushima Prefecture (Japan). Ambient dose equivalent rate distributions at ground level were obtained by processing the flight data, then compared against measurements taken at ground level on foot using a survey meter. For one hovering flight, the correlation between the datasets was improved by selecting a period of stable flight position and attitude, and by restricting the deviation of the attitude angles. Between 6.0%-7.6% improvement in the position resolution was achieved by using the data from stable flight periods, even when using 1 minute data windows. The precision of hot spot detections and ambient dose equivalent rate distributions obtained from the Compton camera were thus improved by the aforementioned modifications to the system.

11029 (Records 1-20 displayed on this page)