Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 11854

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Soil dust and bioaerosols as potential sources for resuspended $$^{137}$$Cs occurring near the Fukushima Dai-ichi Nuclear Power Plant

Ota, Masakazu; Takahara, Shogo; Yoshimura, Kazuya; Nagakubo, Azusa; Hirouchi, Jun; Hayashi, Naho; Abe, Tomohisa; Funaki, Hironori; Nagai, Haruyasu

Journal of Environmental Radioactivity, 264, p.107198_1 - 107198_15, 2023/08

One of the current major radiation exposure pathways from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident-fallout is inhalation of the re-suspended $$^{137}$$Cs occurring in air. While wind-induced soil particle resuspension has been recognized as a primary mechanism of $$^{137}$$Cs resuspension, studies following the FDNPP accident suggested that fungal spores can be a significant source of the atmospheric $$^{137}$$Cs particularly in the rural areas such as difficult-to-return zone (DRZ). To elucidate the relative importance of the two resuspension phenomena, we propose a model simulating resuspension of $$^{137}$$Cs as soil particles and fungal spores, and applied it to DRZ. Our model's calculation showed that soil particle resuspension was responsible for the surface-air $$^{137}$$Cs observed during winter-spring, but could not account for the higher $$^{137}$$Cs concentrations observed in summer-autumn. The higher concentrations in the summer-autumn were in general reproduced by implementing fungal spore $$^{137}$$Cs emission, that replenished low soil particle $$^{137}$$Cs resuspension in that period. According to our model's concept, $$^{137}$$Cs accumulation in fungal spores and high spore emission rate characterized by the rural environment were likely responsible for the abundance of spore $$^{137}$$Cs in the air. It was inferred that the influence of the fungal spores on the atmospheric $$^{137}$$Cs would last longer since un-decontaminated forests still exist in DRZ.

Journal Articles

Improvement in the elution performance of an N,N,N',N-tetraoctyl diglycolamide impregnated extraction chromatography adsorbent using neodymium via micro-particle-induced X-ray emission analysis

Takahatake, Yoko; Watanabe, So; Arai, Tsuyoshi*; Sato, Takahiro*; Shibata, Atsuhiro

Applied Radiation and Isotopes, 196, p.110783_1 - 110783_5, 2023/06

 Times Cited Count:0

Journal Articles

$$^{137}$$Cs transfer from soils contaminated by resuspended particles to Japanese mustard spinach in difficult-to-return zone of Fukushima

Tatsuno, Takahiro*; Nihei, Naoto*; Yoshimura, Kazuya; Ote, Nobuhito*

Journal of Radioanalytical and Nuclear Chemistry, 332(6), p.1677 - 1686, 2023/06

Journal Articles

Thirty-year simulation of environmental fate of $$^{137}$$Cs in the Abukuma River basin considering the characteristics of $$^{137}$$Cs behavior in land uses

Ikenoue, Tsubasa; Shimadera, Hikari*; Nakanishi, Takahiro; Kondo, Akira*

Science of the Total Environment, 876, p.162846_1 - 162846_12, 2023/06

 Times Cited Count:0

We conducted 30 years simulation of environmental fate of $$^{137}$$Cs in the Abukuma River basin considering the characteristics of the $$^{137}$$Cs behavior in land uses. Overall, in the Abukuma River basin, the $$^{137}$$Cs transported into the ocean for 30 years was estimated to correspond to 4.6% of the initial deposition in the basin, and the effective half-life of $$^{137}$$Cs deposited in the basin was estimated to be 3.7 years shorter (by 11.6%) than its physical half-life. These results suggested that $$^{137}$$Cs deposited from the accident could still remain for decades. Based on the analysis of the $$^{137}$$Cs behavior in land use, in 2011, the contribution of $$^{137}$$Cs export to the ocean from urban lands was estimated to correspond to 70% of the total $$^{137}$$Cs export. Meanwhile, from 2012 to 2040, the contribution of $$^{137}$$Cs export from agricultural lands was estimated to correspond to 75% of the total $$^{137}$$Cs export. The reduction ratios excluding radioactive decay of $$^{137}$$Cs remained in areas with and without human activities for 30 years after the accident, defined as the ratios of the total outflow to the initial deposition, were estimated to be 11.5%-17.7% and 0.4%-1.4%, respectively. These results suggested that human activities enhance the reduction of $$^{137}$$Cs remaining in land in the past and future.

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-068, 90 Pages, 2023/05

JAEA-Review-2022-068.pdf:3.55MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of thin SiC neutron detector with high radiation resistance" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional neutron detectors is difficult because heavy radiation shields are needed.

JAEA Reports

Design of the SPring-8 JAEA beamline BL22XU

Shiwaku, Hideaki; Marushita, Motoharu*

JAEA-Research 2022-015, 39 Pages, 2023/05

JAEA-Research-2022-015.pdf:2.74MB

We designed the hard X-ray undulator beamline BL22XU, which is dedicated to Japan Atomic Energy Research Institute (JAERI) at SPring-8 (now Japan Atomic Energy Agency (JAEA)). BL22XU is used for XAFS (X-ray Absorption Fine Structure) analysis experiments to develop separation and extraction materials for radioactive waste treatment and to elucidate their chemical behavior, magnetic research experiments using a diffractometer, and experiments under extreme conditions using a high-pressure press and a diamond anvil cell. The available X-ray energy range was set from 3 to 70 keV. To design the optics of the beamline, the reflectivity of the mirrors, the diffraction width of the monochromatic crystal, and the absorptance of the Be window were calculated. In addition, ray tracing was performed to optimize the materials for optics, dimensions, and location. The delay time of the ADL (Acoustic Delay Line) was also examined to ensure the safety in the use of radioactive materials. The operation of BL22XU "JAEA Actinide Science I" has already started. By collaborating BL22XU and BL23SU "JAEA Actinide Science II," which uses a soft X-ray undulator as a light source, we solve the problems to promote nuclear sciences. Since the monochromator was upgraded in 2018-2019, initial planning and measured data are documented here again.

Journal Articles

Raman identification and characterization of chemical components included in simulated nuclear fuel debris synthesized from uranium, stainless steel, and zirconium

Kusaka, Ryoji; Kumagai, Yuta; Watanabe, Masayuki; Sasaki, Takayuki*; Akiyama, Daisuke*; Sato, Nobuaki*; Kirishima, Akira*

Journal of Nuclear Science and Technology, 60(5), p.603 - 613, 2023/05

Journal Articles

Automated decompression filtration system

Osawa, Takahito

Keisoku Gijutsu, 51(6), p.21 - 26, 2023/05

Decompression filtration is a common operation in wet chemistry, and the method using a filtration bell is often used. The author has been developing a fully automated system for wet separation operations, and has developed an automatic decompression filtration device exclusively for robots. In addition, the specifications of this device were changed so that it can be operated by human operators, and it was commercialized.

Journal Articles

Pressure-modulated magnetism and negative thermal expansion in the Ho$$_2$$Fe$$_{17}$$ intermetallic compound

Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.

Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04

Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in Ho$$_2$$Fe$$_{17}$$ on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.

Journal Articles

Iodate respiration by $$Azoarcus$$ sp. DN11 and its potential use for removal of radioiodine from contaminated aquifers

Sasamura, Seiya*; Onuki, Toshihiko*; Kozai, Naofumi; Amachi, Seigo*

Frontiers in Microbiology (Internet), 14, p.1162788_1 - 1162788_7, 2023/04

$$Azoarcus$$ sp. DN11 previously isolated from gasoline-contaminated groundwater contained a gene cluster involved in bacterial iodate (IO$$_{3}$$$$^{-}$$) respiration. This study determined if strain DN11 performed iodate respiration and assessed its potential use to remove and sequester radioactive iodine ($$^{129}$$I) from subsurface contaminated aquifers. Strain DN11 grew anaerobically with iodate as the sole electron acceptor. After the growth of strain DN11 on iodate, silver-impregnated zeolite was added to the spent medium to remove iodide from the aqueous phase. In the presence of 200 $$mu$$M iodate as the electron acceptor, more than 98% of iodine was successfully removed from the aqueous phase. These results suggest that strain DN11 is potentially helpful for bioaugmentation of $$^{129}$$I-contaminated subsurface aquifers.

Journal Articles

Aging of fuel-containing materials (fuel debris) in the Chornobyl (Chernobyl) Nuclear Power Plant and its implication for the decommissioning of the Fukushima Daiichi Nuclear Power Station

Kitagaki, Toru; Krasnov, V.*; Ikeda, Atsushi

Journal of Nuclear Materials, 576, p.154224_1 - 154224_14, 2023/04

 Times Cited Count:0 Percentile:1.61(Materials Science, Multidisciplinary)

Journal Articles

Short-range spin order in paramagnetic AgCrSe$$_{2}$$

Nakamura, Jumpei*; Kawakita, Yukinobu; Okabe, Hirotaka*; Li, B.*; Shimomura, Koichiro*; Suemasu, Takashi*

Journal of Physics and Chemistry of Solids, 175, p.111199_1 - 111199_8, 2023/04

Journal Articles

Attention-based time series analysis for data-driven anomaly detection in nuclear power plants

Dong, F.*; Chen, S.*; Demachi, Kazuyuki*; Yoshikawa, Masanori; Seki, Akiyuki; Takaya, Shigeru

Nuclear Engineering and Design, 404, p.112161_1 - 112161_15, 2023/04

 Times Cited Count:0 Percentile:0.05(Nuclear Science & Technology)

Journal Articles

MAAP code analysis focusing on the fuel debris condition in the lower head of the pressure vessel in Fukushima-Daiichi Nuclear Power Station Unit 2

Sato, Ikken; Yoshikawa, Shinji; Yamashita, Takuya; Cibula, M.*; Mizokami, Shinya*

Nuclear Engineering and Design, 404, p.112205_1 - 112205_21, 2023/04

 Times Cited Count:0 Percentile:0.05(Nuclear Science & Technology)

Based on updated knowledge from plant-internal investigations, experiments and model simulations until now, the in-vessel phase of Fukushima-Daiichi Nuclear Power Station Unit 2 was analyzed using the MAAP code. In Unit 2, it is considered that the core material enthalpy was relatively low when it relocated to the lower plenum of the pressure vessel, then, cooled by the coolant and solidified there. Although the MAAP code tended to underestimate the degree of core-material oxidation during the relocation, this probable underestimation was compensated for by an existing study that was considered more reliable, so that more realistic debris conditions in the lower plenum could be obtained. Basic validity of the former prediction of the Unit 2 accident progression behavior was confirmed and detailed boundary condition for the later phase was provided. This boundary condition should be utilized for future studies addressing debris reheating process leading to lower head failure and debris relocation toward the pedestal.

Journal Articles

Phase analysis of simulated nuclear fuel debris synthesized using UO$$_{2}$$, Zr, and stainless steel and leaching behavior of the fission products and matrix elements

Tonna, Ryutaro*; Sasaki, Takayuki*; Kodama, Yuji*; Kobayashi, Taishi*; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Kumagai, Yuta; Kusaka, Ryoji; Watanabe, Masayuki

Nuclear Engineering and Technology, 55(4), p.1300 - 1309, 2023/04

 Times Cited Count:0

Simulated debris was synthesized using UO$$_{2}$$, Zr, and stainless steel and a heat treatment method under inert or oxidizing conditions. The primary U solid phase of the debris synthesized at 1473 K under inert conditions was UO$$_{2}$$, whereas a (U,Zr)O$$_{2}$$ solid solution formed at 1873 K. Under oxidizing conditions, a mixture of U$$_{3}$$O$$_{8}$$ and (Fe,Cr)UO$$_{4}$$ phases formed at 1473 K whereas a (U,Zr)O$$_{2+x}$$ solid solution formed at 1873 K. The leaching behavior of the fission products from the simulated debris was evaluated using two methods: the irradiation method, for which fission products were produced via neutron irradiation, and the doping method, for which trace amounts of non-radioactive elements were doped into the debris. The dissolution behavior of U depended on the properties of the debris and aqueous medium the debris was immersed in. Cs, Sr, and Ba leached out regardless of the primary solid phases. The leaching of high-valence Eu and Ru ions was suppressed, possibly owing to their solid-solution reaction with or incorporation into the uranium compounds of the simulated debris.

Journal Articles

A New application technique of a position-sensitive liquid light guide Cerenkov counter for the simultaneous position detection of $$^{90}$$Sr/$$^{90}$$Y and $$^{137}$$Cs radioactivity

Terasaka, Yuta; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 1049, p.168071_1 - 168071_7, 2023/04

JAEA Reports

Irradiation test using foreign reactor, 1; Study of irradiation test with capsule temperature control system (Joint research)

Takabe, Yugo; Otsuka, Noriaki; Fuyushima, Takumi; Sayato, Natsuki; Inoue, Shuichi; Morita, Hisashi; Jaroszewicz, J.*; Migdal, M.*; Onuma, Yuichi; Tobita, Masahiro*; et al.

JAEA-Technology 2022-040, 45 Pages, 2023/03

JAEA-Technology-2022-040.pdf:6.61MB

Because of the decommission of the Japan Materials Testing Reactor (JMTR), the domestic neutron irradiation facility, which had played a central role in the development of innovative nuclear reactors and the development of technologies to further improve the safety, reliability, and efficiency of light water reactors, was lost. Therefore, it has become difficult to pass on the operation techniques of the irradiation test reactors and irradiation technologies, and to train human resources. In order to cope with these issues, we conducted a study on the implementation of irradiation tests using overseas reactors as neutron irradiation sites as an alternative method. Based on the "Arrangement between the National Centre for Nuclear Research and the Japan Atomic Energy Agency for Cooperation in Research and Development on Testing Reactor," the feasibility of conducting an irradiation test at the MARIA reactor (30 MW) owned by the National Centre for Nuclear Research (NCBJ) using the temperature control system, which is one of the JMTR irradiation technologies, was examined. As a result, it was found that the irradiation test was possible by modifying the ready-made capsule manufactured in accordance with the design and manufacturing standards of the JMTR. After the modification, a penetration test, an insulation continuity test, and an operation test in the range of room temperature to 300$$^{circ}$$C, which is the operating temperature of the capsule, were conducted and favorable results were obtained. We have completed the preparations prior to transport to the MARIA reactor.

JAEA Reports

Development of stable solidification technique of ALPS sediment wastes by apatite ceramics (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-076, 227 Pages, 2023/03

JAEA-Review-2022-076.pdf:9.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of stable solidification technique of ALPS sediment wastes by apatite ceramics" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to establish an apatite solidification process of radioactive sediment wastes, which were generated from the ALPS process manipulating the large amount of contaminated water from 1F. We selected the precipitation method and post stabilization for engineering-scale process. Investigation on composition, structure and elution properties of apatite and related phosphate waste forms fabricated from the simulated ALPS sediment wastes were implemented.

JAEA Reports

Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-072, 116 Pages, 2023/03

JAEA-Review-2022-072.pdf:6.32MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment" conducted in FY2021. The present study aims to establish the rational waste disposal concept of a variety of wastes generated in 1F by the novel hybrid-waste-solidification. The phosphate form of ALPS sediment wastes containing Eu$$^{3+}$$, Ce$$^{4+}$$, Sr$$^{2+}$$ and Cs$$^{+}$$ were synthesized as well as radioactive $$^{95}$$Sr, $$^{136}$$Cs and $$^{126}$$I which are both $$gamma$$ emitters, AREVA sludge and Iodine Calcium apatite were synthesized, and they were processed to the stabilization treatment such as sintering and Spark Plasma

11854 (Records 1-20 displayed on this page)