Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 174

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Numerical analysis of a potential Reactor Pressure Vessel (RPV) boundary failure mechanism in Fukushima Daiichi Nuclear Power Station Unit-2

Li, X.; Yamaji, Akifumi*; Sato, Ikken*; Yamashita, Takuya

Annals of Nuclear Energy, 214, p.111217_1 - 111217_13, 2025/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

JAEA Reports

Conceptual study of J-PARC Proton Beam Irradiation Facility

Meigo, Shinichiro; Iwamoto, Hiroki; Sugihara, Kenta*; Hirano, Yukinori*; Tsutsumi, Kazuyoshi*; Saito, Shigeru; Maekawa, Fujio

JAEA-Technology 2024-026, 123 Pages, 2025/03

JAEA-Technology-2024-026.pdf:14.22MB

Based on the design of the ADS Target Test Facility (TEF-T) at the J-PARC Transmutation Experimental Facility, a conceptual study was conducted on the J-PARC proton beam irradiation facility. This research was carried out based on the recommendations of the Nuclear Transmutation Technology Evaluation Task Force of the MEXT. The recommendations state that it is desirable to consider facility specifications that can make the most of the benefits of using the existing J-PARC proton accelerator while also solving the engineering issues of the ADS. We considered facilities that could respond to a variety of needs while reducing the facilities that were not needed in the TEF-T design. In order to clarify these diverse needs, we investigated the usage status of representative accelerator facilities around the world. As a result, it became clear that the main purposes of these facilities were (1) Material irradiation, (2) Soft error testing of semiconductor devices using spallation neutrons, (3) Production of RI for medical use, and (4) Proton beam use, and we investigated the facilities necessary for these purposes. In considering the facility concept, we assumed a user community in 2022 and reflected user opinions in the facility design. This report summarizes the results of the conceptual study of the proton irradiation facility, various needs and responses to them, the roadmap for facility construction, and future issues.

JAEA Reports

Evaluation report for sludge measurement by nondestructive assay (Plutonium Scrap Multiplicity Counter)(Joint research)

Tanigawa, Masafumi; Seya, Kazuhito*; Asakawa, Naoya*; Hayashi, Hiroyuki*; Horigome, Kazushi; Mukai, Yasunobu; Kitao, Takahiko; Nakamura, Hironobu; Henzlova, D.*; Swinhoe, M. T.*; et al.

JAEA-Technology 2024-014, 63 Pages, 2025/02

JAEA-Technology-2024-014.pdf:3.02MB

The liquid waste treatment process generated sludge items at the plutonium conversion development facility. They are highly heterogeneous and contain large amounts of impurities (Na, Fe, Ni etc.). Therefore, the sludge items have very large sampling uncertainty and so the total measurement uncertainty is very large (approximately 24%). The plutonium scrap multiplicity counter (PSMC) measurement technique for sludge items was developed by joint research between the Japan Atomic Energy Agency (JAEA) and Los Alamos National Laboratory (LANL). The technical validity for sludge items using the PSMC was evaluated using various types of sample measurements and Monte Carlo N-Particle transport code calculations. The PSMC measurement parameters were found to be valid for use with sludge items and the validity of multiplicity analysis was confirmed and demonstrated through comparisons with standard MOX powder and a standard sludge. As a result, the PSMC measurement values were shown to be consistent and reasonable and the large amount of impurity (Fe, Ni etc.) did not impact the results. Therefore, the measurement uncertainty of the improved nuclear material accountancy (NMA) procedure by combined PSMC and high-resolution gamma spectrometry was shown to be 6.5%. In addition, an acceptance test was conducted using PSMC/HRGS and IAEA benchmark equipment. Measured Pu mass by both equipment agrees within the measurement uncertainty of each method, and so the validity for Pu mass measurement by PSMC/HRGS was confirmed. The above results confirm the applicability of PSMC/HRGS as an additional NMA method for sludge and a newly designed NDA procedure based on this study is applied to sludge for NMA in PCDF.

Journal Articles

Development of a new crust model for analyzing VULCANO VBS-U3 mcci experiment with MPS method

Yamada, Takeshi*; Li, X.; Yamashita, Takuya; Yamaji, Akifumi*

Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 10 Pages, 2024/11

In this study, a new crust model is being developed to analyze MCCI, which involves continuous concrete ablation with presence of the crust layer between the corium and the concrete walls, which may gradually move with the slow concrete wall ablation process over long time. The new crust model must enable accumulation of physical displacement of the crust particle over long time (i.e., enable physical creeping) while preventing accumulation of numerical displacement of the crust particles over long time (i.e., preventing numerical creeping), Hence, in the new crust model, the PS has been effectively disabled for the crust particles. Qualitative validity of such numerical modeling was confirmed through some trial analyses of VULCANO-VBS test using a set of tentative calculation conditions and parameters, which should be carefully revised for future quantitative discussions including validation of the analysis results with experimental results.

Journal Articles

Current status of high temperature gas-cooled reactor development in Japan

Nagatsuka, Kentaro; Noguchi, Hiroki; Nagasumi, Satoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Nishihara, Tetsuo; Sakaba, Nariaki

Nuclear Engineering and Design, 425, p.113338_1 - 113338_11, 2024/08

 Times Cited Count:2 Percentile:68.64(Nuclear Science & Technology)

HTGR has a potential to contribute to decarbonization of hard-to-abate industries by supplying a large amount of hydrogen and high temperature heat or steam without carbon dioxide emission. JAEA has been conducting R&Ds for HTGR technologies with High Temperature Engineering Test Reactor (HTTR). This paper shows that HTTR's tests including the loss of core cooing test as a joint the OECD/NEA international research project and a HTTR heat application test plan which demonstrate hydrogen production by coupling the HTTR with a hydrogen production test facility. Additionally, aiming for operation start from the latter half of 2030s, the basic design of the HTGR demonstration reactor has been shown. The Japan's HTGR technology capabilities established by the HTTR project will be fully utilized for the construction of HTGR demonstration reactor.

Journal Articles

Measurement of the prompt fission $$gamma$$-rays from slow neutron-induced fission of $$^{235}$$U with STEFF

Wright, T.*; Harada, Hideo; Kimura, Atsushi; 121 of others*

European Physical Journal A, 60(3), p.70_1 - 70_11, 2024/03

 Times Cited Count:0 Percentile:0.00(Physics, Nuclear)

Journal Articles

New JENDL-4.0/HE neutron and proton ACE files

Konno, Chikara

Journal of Nuclear Science and Technology, 61(1), p.121 - 126, 2024/01

 Times Cited Count:1 Percentile:30.19(Nuclear Science & Technology)

The JENDL-4.0/HE neutron and proton ACE files were produced in 2017 and those of 22 nuclei for neutron and 25 nuclei for proton were bundled in the PHITS code. Recently it was found that the following five data in the JENDL-4.0/HE neutron and proton ACE files had any problems; ACE files for $$^{15}$$N and $$^{18}$$O, heating numbers, damage energy production cross sections, secondary neutron multiplicities and fission cross sections. Thus new JENDL-4.0/HE neutron and proton ACE files were produced with the problems fixed. This paper describes the problems and how to produce the new neutron and proton ACE files in detail.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

JAEA Reports

Nuclear criticality benchmark analyses on TRIGA-type reactor systems by using continuous-energy Monte Carlo code MVP with JENDL-5

Yanagisawa, Hiroshi; Umeda, Miki; Motome, Yuiko; Murao, Hiroyuki

JAEA-Technology 2022-030, 80 Pages, 2023/02

JAEA-Technology-2022-030.pdf:2.57MB
JAEA-Technology-2022-030(errata).pdf:0.11MB

Nuclear criticality benchmark analyses were carried out for TRIGA-type reactor systems in which uranium-zirconium hydride fuel rods are loaded by using the continuous-energy Monte Carlo code MVP with the evaluated nuclear data library JENDL-5. The analyses cover two sorts of benchmark data, the IEU-COMP-THERM-003 and IEU-COMP-THERM-013 in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook, and effective neutron multiplication factors, reactivity worths for control rods etc. were calculated by JENDL-5 in comparison with those by the previous version of JENDL. As the results, it was confirmed that the effective neutron multiplication factors obtained by JENDL-5 were 0.4 to 0.6% greater than those by JENDL-4.0, and that there were no significant differences in the calculated reactivity worths by between JENDL-5 and JENDL-4.0. Those results are considered to be helpful for the confirmation of calculation accuracy in the analyses on NSRR control rod worths, which are planned in the future.

Journal Articles

Particle-based simulation of jet impingement behaviors

Takatsuka, Daichi*; Morita, Koji*; Liu, W.*; Zhang, T.*; Nakamura, Takeshi*; Kamiyama, Kenji

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 10 Pages, 2022/10

JAEA Reports

Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-010, 155 Pages, 2022/06

JAEA-Review-2022-010.pdf:9.78MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles during fuel debris retrieval in Fukushima Daiichi Nuclear Power Station, TEPCO. As measures to prevent dispersion of microparticles, (1) a method to suppress the dispersion with minimum amount of water utilizing water spray etc., and (2) a method to suppress the dispersion by solidifying ...

Journal Articles

Subcriticality determination methodology during fuel loading of accelerator-driven system

Katano, Ryota

Journal of Nuclear Science and Technology, 59(3), p.368 - 381, 2022/03

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

We propose a subcriticality determination methodology to be applied during fuel loading of an accelerator-driven system (ADS). In this methodology, subcriticality is determined via the area ratio method (via the proton accelerator) in the first step and by the neutron source multiplication method (through the spontaneous fission neutrons of minor actinides) in subsequent steps; then, the number of fuel assemblies to be loaded in the next step is predicted. We performed a numerical simulation of the proposed methodology, and the estimated subcriticalities agreed well with those obtained by eigenvalue calculations. We also conducted an uncertainty assessment of the proposed methodology and deduced a value of 1000 pcm for the $$k_{eff}$$ uncertainty. The proposed methodology can be a candidate for practical subcriticality monitoring for ADS.

Journal Articles

Integration of pool scrubbing research to enhance source-term calculations (IPRESCA) project

Gupta, S.*; Herranz, L. E.*; Lebel, L. S.*; Sonnenkalb, M.*; Pellegrini, M.*; Marchetto, C.*; Maruyama, Yu; Dehbi, A.*; Suckow, D.*; K$"a$rkel$"a$, T.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

JAEA Reports

Prediction of RPV lower structure failure and core material relocation behavior with MPS method (Contract research)

Yoshikawa, Shinji; Yamaji, Akifumi*

JAEA-Research 2021-006, 52 Pages, 2021/09

JAEA-Research-2021-006.pdf:3.89MB

In Fukushima Daiichi Nuclear Power Station (referred to as "FDNPS" hereafter) unit2 and unit3, failure of the reactor pressure vessel (RPV) and relocation of some core materials (CRD piping elements and upper tie plate, etc.) to the pedestal region have been confirmed. In boiling water reactors (BWRs), complicated core support structures and control rod drive mechanisms are installed in the RPV lower head and its upper and lower regions, so that the relocation behavior of core materials to pedestal region is expected to be also complicated. The Moving Particle Semi-implicit (MPS) method is expected to be effective in overviewing the relocation behavior of core materials in complicated RPV lower structure of BWRs, because of its Lagrangian nature in tracking complex interfaces. In this study, for the purpose of RPV ablation analysis of FDNPS unit2 and unit3, rigid body model, parallelization method and improved calculation time step control method were developed in FY 2019 and improvement of pressure boundary condition treatment, stabilization of rigid body model, and calculation cost reduction of debris bed melting simulation were achieved in FY2020. These improvements enabled sensitivity analyses of melting, relocation and re-distribution behavior of deposited solid debris in RPV lower head on various cases, within practical calculation cost. As a result of the analyses of FDNPS unit2 and unit3, it was revealed that aspect (particles/ingots) and distribution (degree of stratification) of solidified debris in lower plenum have a great impact on the elapsed time of the following debris reheat and partial melting and on molten pool formation process, further influencing RPV lower head failure behavior and fuel debris discharging behavior.

JAEA Reports

Technical basis of ECCS acceptance criteria for light-water reactors and applicability to high burnup fuel

Nagase, Fumihisa; Narukawa, Takafumi; Amaya, Masaki

JAEA-Review 2020-076, 129 Pages, 2021/03

JAEA-Review-2020-076.pdf:3.9MB

Each light-water reactor (LWR) is equipped with the Emergency Core Cooling System (ECCS) to maintain the coolability of the reactor core and to suppress the release of radioactive fission products to the environment even in a loss-of-coolant accident (LOCA) caused by breaks in the reactor coolant pressure boundary. The acceptance criteria for ECCS have been established in order to evaluate the ECCS performance and confirm the sufficient safety margin in the evaluation. The limits defined in the criteria were determined in 1975 and reviewed based on state-of-the-art knowledge in 1981. Though the fuel burnup extension and necessary improvements of cladding materials and fuel design have been conducted, the criteria have not been reviewed since then. Meanwhile, much technical knowledge has been accumulated regarding the behavior of high-burnup fuel during LOCAs and the applicability of the criteria to the high-burnup fuel. This report provides a comprehensive review of the history and technical bases of the current criteria and summarizes state-of-the-art technical findings regarding the fuel behavior during LOCAs. The applicability of the current criteria to the high-burnup fuel is also discussed.

JAEA Reports

Proceedings of the 2019 Symposium on Nuclear Data; November 28-30, 2019, Kyushu University, Chikushi Campus, Fukuoka, Japan

Watanabe, Yukinobu*; Shigyo, Nobuhiro*; Kin, Tadahiro*; Iwamoto, Osamu

JAEA-Conf 2020-001, 236 Pages, 2020/12

JAEA-Conf-2020-001.pdf:13.75MB

The 2019 Symposium on Nuclear Data was held at Chikushi Campus Cooperation Building (C-Cube), Kyushu University, on November 28 to 30, 2019. The symposium was organized by the Nuclear Data Division of the Atomic Energy Society of Japan (AESJ) in cooperation with Sigma Investigative Advisory Committee of AESJ, Nuclear Science and Engineering Center of Japan Atomic Energy Agency, Kyushu Branch of AESJ, and Center for Accelerator and Beam Applied Science of Kyushu University. In the symposium, there were one tutorial, "From the resonance theory to statistical model", and five sessions, "Study on Nuclear Data and related topics", "Reactor physics", "International Cooperation", "Nuclear Physics", and "High Energy Nuclear Data and their Application". In addition, recent research progress on experiments, nuclear theory, evaluation, benchmark and applications was presented in the poster session. Among 85 participants, all presentations and following discussions were very active and fruitful. This report consists of total 42 papers including 13 oral and 29 poster presentations.

JAEA Reports

Assessment report on research and development activities in FY2019; Activity "Research and development on high temperature gas-cooled reactor and related heat application technology" (Interim report)

Sector of Fast Reactor and Advanced Reactor Research and Development

JAEA-Evaluation 2020-001, 128 Pages, 2020/08

JAEA-Evaluation-2020-001.pdf:7.44MB

Japan Atomic Energy Agency consulted with the "Evaluation Committee of Research Activities for High Temperature Gas-cooled Reactor (hereinafter referred to as "HTGR") and Related Hydrogen Production Technology" (hereinafter referred to as "Evaluation Committee"), which consists of specialists in the fields of the evaluation subjects of high temperature gas-cooled reactor and related heat application technology, for interim assessment in the 3rd Mid-and Long-Term Plan about the relevance of the management and research activities of the HTGR and related application technology during the period from April 2017 to March 2020. As a result, three members of the Evaluation Committee concluded a score of "S", and seven members of the Evaluation Committee concluded a score of "A". The interim assessment to research and development activities from April 2017 to March 2020 was concluded a score of "A". In addition, the Evaluation Committee recommended that the judgement to move to the construction phase of the HTTR-heat utilization test plant be made after 2 years, after the HTTR will be restarted and the thermal load fluctuation tests using HTTR will be carried out. This report lists the members of the Evaluation Committee and outlines the assessment item and the review process for procedure of the assessment. The assessment report which was issued by the Evaluation Committee is attached.

JAEA Reports

Development of technology to prevent scattering of radioactive materials in fuel debris retrieval (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-037, 90 Pages, 2020/03

JAEA-Review-2019-037.pdf:7.0MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology to Prevent Scattering of Radioactive Materials in Fuel Debris Retrieval". The objective of the present study is to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles at the time of debris retrieval in Fukushima Daiichi Nuclear Power Station. In addition, as measures to prevent scattering, we will evaluate and develop methods by experiments and simulation as to; (1) a method to suppress the scattering with minimum amount of water utilizing water spray etc., and (2) a method to suppress the scattering by solidifying fuel debris.

Journal Articles

Estimation of uncertainty in lead spallation particle multiplicity and its propagation to a neutron energy spectrum

Iwamoto, Hiroki; Meigo, Shinichiro

Journal of Nuclear Science and Technology, 57(3), p.276 - 290, 2020/03

 Times Cited Count:2 Percentile:18.47(Nuclear Science & Technology)

This paper presents an approach to uncertainty estimation of spallation particle multiplicity of lead ($$^{rm nat}$$Pb), primarily focusing on proton-induced spallation neutron multiplicity ($$x_{pn}$$) and its propagation to a neutron energy spectrum. The $$x_{pn}$$ uncertainty is estimated from experimental proton-induced neutron-production double-differential cross sections (DDXs) and model calculations with the Particle and Heavy Ion Transport code System (PHITS). Uncertainties in multiplicities for $$(n,xn)$$, $$(p,xp)$$, and $$(n,xp)$$ reactions are then inferred from the estimated $$x_{pn}$$ uncertainty and the PHITS calculation. Using these uncertainties, uncertainty in a neutron energy spectrum produced from a thick $$^{rm nat}$$Pb target bombarded with 500 MeV proton beams, measured in a previous experiment, is quantified by a random sampling technique, and propagation to the neutron energy spectrum is examined. Relatively large uncertainty intervals (UIs) were observed outside the lower limit of the measurement range, which is prominent in the backward directions. Our findings suggest that a reliable assessment of spallation neutron energy spectra requires systematic DDX experiments for detector angles and incident energies below 100 MeV as well as neutron energy spectrum measurements at lower energies below $$sim$$1.4 MeV with an accuracy below the quantified UIs.

JAEA Reports

Proceedings of the 2018 Symposium on Nuclear Data; November 29-30, 2018, Tokyo Institute of Technology, Ookayama Campus, Tokyo, Japan

Chiba, Satoshi*; Ishizuka, Chikako*; Tsubakihara, Kosuke*; Iwamoto, Osamu

JAEA-Conf 2019-001, 203 Pages, 2019/11

JAEA-Conf-2019-001.pdf:18.86MB

The 2018 Symposium on Nuclear Data was held at Multi-Purpose Digital Hall and Collaboration Room of Tokyo Institute of Technology, on November 29 and 30, 2018. The symposium was organized by the Nuclear Data Division of the Atomic Energy Society of Japan (AESJ) in cooperation with Sigma Special Committee of AESJ, Nuclear Science and Engineering Center of Japan Atomic Energy Agency, and Laboratory for Advanced Nuclear Energy of Institute of Innovative Research, Tokyo Institute of Technology. In the symposium, there were one tutorial, "Development of nuclear data processing code FRENDY", one special lecture "What the future holds for Nuclear Energy" and seven oral sessions, "Nuclear Data and Future Perspectives", "Current Status and Future Perspectives of Reactor Physics", "Topics", "Nuclear Data Applications", "International Session", "Nuclear Data Measurements and New Technology for Nuclear Reactor Diagnosis", and "Data Needs from New Fields". In addition, recent research progress on experiments, evaluation, benchmark and application was presented in the poster session. Among 82 participants, all presentations and following discussions were very active and fruitful. This report consists of total 35 papers including 13 oral and 22 poster presentations.

174 (Records 1-20 displayed on this page)