Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Niu, X.*; Elakneswaran, Y.*; Li, A.*; Seralathan, S.*; Kikuchi, Ryosuke*; Hiraki, Yoshihisa; Sato, Junya; Osugi, Takeshi; Walkley, B.*
Cement and Concrete Research, 190, p.107814_1 - 107814_17, 2025/04
Times Cited Count:0 Percentile:0.00(Construction & Building Technology)Yang, X.*; Che, G.*; Wang, Y.*; Zhang, P.*; Tang, X.*; Lang, P.*; Gao, D.*; Wang, X.*; Wang, Y.*; Hattori, Takanori; et al.
Nano Letters, 25(3), p.1028 - 1035, 2025/01
Times Cited Count:1 Percentile:0.00(Chemistry, Multidisciplinary)Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.5 and 4 GPa. Above 20 GPa, phenol polymerizes into degree-4 CNThs featuring hydroxyl and carbonyl groups. Hydrogen transfer of hydroxyl groups was found to hinder the formation of degree-6 nanothreads. Our findings highlight the crucial role of the hydroxyl group in halting further intracolumn polymerization and offer valuable insights for future mechanism research and nanomaterial synthesis.
Che, G.*; Fei, Y.*; Tang, X.*; Zhao, Z.*; Hattori, Takanori; Abe, Jun*; Wang, X.*; Ju, J.*; Dong, X.*; Wang, Y.*; et al.
Physical Chemistry Chemical Physics, 27(2), p.1112 - 1118, 2025/01
Times Cited Count:3 Percentile:65.57(Chemistry, Physical)Pressure-induced polymerization (PIP) of aromatic molecules has emerged as an effective method for synthesizing various carbon-based materials. In this work, PIP of 1,4-difluorobenzene (1,4-DFB) was investigated. high-pressure investigations of 1,4-DFB reveal a phase transition at approximately 12.0 GPa and an irreversible chemical reaction at 18.7 GPa. Structural analysis of the product and the kinetics of the reaction uncovered the formation of pseudohexagonal stacked fluoro-diamond nanothreads with linear growth. Compared to the crystal structures of benzene under high pressure, 1,4-DFB exhibits higher compression along the [001] axis. The anisotropic compression is attributed to the stronger H
interaction along the [01
] axis and the potential compression-inhibiting H
F interactions along the [100] and [010] axes, and it facilitates a possible reaction pathway along the [01
] axis. This work emphasizes the crucial role of functionalization in modulating molecular stacking and influencing the reaction pathway.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2024-021, 126 Pages, 2024/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc" conducted in FY2022. The present study aims to propose a construction method to stop jet deflectors by improved geopolymer and ultra-heavy muddy water, and to repair the lower part of the dry well. In addition, in order to increase the options for on-site construction in unknown situations such as deposition conditions, we will examine a wide range of construction outside the pedestal, and evaluate the feasibility of the construction method by the latest thermal flow simulation method.
Cantarel, V.; Chupin, F.; Ortega-Charlot, M.*; Yamagishi, Isao; Ueno, Fumiyoshi
Journal of Nuclear Materials, 592, p.154969_1 - 154969_9, 2024/04
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Kim, G.*; Cho, S.-M.*; Im, S.*; Suh, H.*; Morooka, Satoshi; Shobu, Takahisa; Kanematsu, Manabu*; Machida, Akihiko*; Bae, S.*
Construction and Building Materials, 411, p.134529_1 - 134529_18, 2024/01
Times Cited Count:8 Percentile:69.96(Construction & Building Technology)Iwamoto, Toshihiro; Saito, Madoka*; Takahatake, Yoko; Watanabe, So; Watanabe, Masayuki; Naruse, Atsuki*; Tsukahara, Takehiko*
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 4 Pages, 2023/05
Applicability of temperature swing extraction technology employing monoamides was examined for uranium contaminated waste treatment procedure. Separation experiments on simulated target solution with three kinds of monoamides with different structure showed that Ce(IV) in the solution was selectively recovered by the temperature swing extraction operation. Based on the experiments, an appropriate monoamide for the procedure was selected.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2022-062, 121 Pages, 2023/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc." conducted in FY2021. The present study aims to propose a construction method to stop jet deflectors by improved geopolymer and ultra-heavy muddy water, and to repair the lower part of the dry well. In addition, in order to increase the options for on-site construction in unknown situations such as deposition conditions, we will examine a wide range of construction outside the pedestal, and evaluate the feasibility of the construction method by the latest thermal flow simulation method. When widely constructed, fuel debris and deposits discharged out of the pedestal are coated with water stop and repair materials and become waste ...
Onutai, S.; Sato, Junya; Osugi, Takeshi
Journal of Solid State Chemistry, 319, p.123808_1 - 123808_10, 2023/03
Times Cited Count:25 Percentile:97.75(Chemistry, Inorganic & Nuclear)Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2022-050, 116 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Safe, efficient cementation of challenging radioactive wastes using alkali activated materials with high-flowability and high-anion retention capacity" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to explore alkali activated materials with high anionic nuclide retention and flowability and their recipes for safe storage and disposal of iron flocculant from the water treatment facility at 1F, and to propose a design of a solidification device that is feasible as an actual plant. In order to achieve these objectives, the following five items were carried out in this study.
Reeb, C.*; Davy, C. A.*; Pierlot, C.*; Bertin, M.*; Cantarel, V.; Lambertin, D.*
Cement and Concrete Research, 162, p.106963_1 - 106963_16, 2022/12
Times Cited Count:9 Percentile:55.32(Construction & Building Technology)Cantarel, V.; Yamagishi, Isao
Journal of Nuclear Science and Technology, 59(7), p.888 - 897, 2022/07
Times Cited Count:3 Percentile:29.47(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2022-010, 155 Pages, 2022/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles during fuel debris retrieval in Fukushima Daiichi Nuclear Power Station, TEPCO. As measures to prevent dispersion of microparticles, (1) a method to suppress the dispersion with minimum amount of water utilizing water spray etc., and (2) a method to suppress the dispersion by solidifying fuel debris were evaluated by experiments and simulation. The applicability of these methods to the actual plants was also evaluated.
Ohira, Masashi*; Katashima, Takuya*; Naito, Mitsuru*; Aoki, Daisuke*; Yoshikawa, Yusuke*; Iwase, Hiroki*; Takata, Shinichi; Miyata, Kanjiro*; Chung, U.-I.*; Sakai, Takamasa*; et al.
Advanced Materials, 34(13), p.2108818_1 - 2108818_9, 2022/01
Times Cited Count:23 Percentile:88.23(Chemistry, Multidisciplinary)Nogami, Satoshi*; Kadota, Kazunori*; Uchiyama, Hiromasa*; Arima-Osonoi, Hiroshi*; Iwase, Hiroki*; Tominaga, Taiki*; Yamada, Takeshi*; Takata, Shinichi; Shibayama, Mitsuhiro*; Tozuka, Yuichi*
International Journal of Biological Macromolecules, 190, p.989 - 998, 2021/11
Times Cited Count:9 Percentile:46.93(Biochemistry & Molecular Biology)Ito, Kanae; Yamada, Takeshi*; Shinohara, Akihiro*; Takata, Shinichi; Kawakita, Yukinobu
Journal of Physical Chemistry C, 125(39), p.21645 - 21652, 2021/10
Times Cited Count:9 Percentile:42.54(Chemistry, Physical)Zhou, Q.*; Saito, Takumi*; Suzuki, Seiya; Yano, Kimihiko; Suzuki, Shunichi*
Journal of Nuclear Science and Technology, 58(4), p.461 - 472, 2021/04
Times Cited Count:9 Percentile:67.14(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2020-054, 72 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Safe, efficient cementation of challenging radioactive wastes using alkali activated materials with high-flowability and high-anion retention capacity". The purpose of this study is to find safe, efficient cementation of challenging radioactive wastes using alkali activated materials with high-flowability and high-anion retention capacity, and to propose the concept of a manufacturing apparatus that is established as an actual plant. As a result of study in this year, it was revealed that the K-based alkali activated material has high-flowability and quick curing, and that high-iodine retention capacity is achieved by incorporating silver ions during manufacturing of solidified waste.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2020-043, 116 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted in FY2019. In this study, a technique to effectively suppress the scattering of fine particles has been developed, and as a result of experiments, a method of spraying with water mist was found to be an effective and applicable method for improving aerosol removal efficiency and removal rate. As a method of solidifying fuel debris to suppress fine particle scattering during cutting, geopolymer was evaluated for its strength, thermal conductivity and cutting powder. In addition, flow status of geopolymer and the temperature distribution inside RPV covered by geopolymer were simulated.
Cantarel, V.; Lambertin, D.*; Labed, V.*; Yamagishi, Isao
Journal of Nuclear Science and Technology, 58(1), p.62 - 71, 2021/01
Times Cited Count:7 Percentile:55.56(Nuclear Science & Technology)The gas production of wasteforms is a major safety concern for encapsulating active nuclear wastes. For geopolymers and cements, the H produced by radiolytic processes is a key factor because of the large amount of water present in their porous structure. Herein, the gas composition evolution around geopolymers was monitored on line under
Co gamma irradiation. Transient evolution of the hydrogen production yield was measured for samples with different formulations. The rate of its evolution and the final values are consistent with the presence of a chemical reaction of the pseudo-first order consuming hydrogen in the samples. The results show this phenomenon can significantly reduce the hydrogen source term of geopolymer wasteform provided their diffusion constant remains low. Lower hydrogen production rates and faster kinetics were observed with geopolymers formulations in which pore water pH was higher. Besides hydrogen production, a steady oxygen consumption was observed for all geopolymers samples. The oxygen consumption rates are proportional to the diffusion constants estimated in the modelization of hydrogen recombination by a pseudo first order reaction.